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Abstract

Triplet down conversion is a non-linear optical process which was first achieved experimentally in
2010. The highly non-linear interaction poses challenges for a theoretical treatment of the process.
In this dissertation, the positive-P representation of optical phase space is used to examine the time
evolution of a system undergoing triplet down conversion, with a focus on the degenerate case. We
examine the behaviour of the resulting steady states as a function of the pumping that drives the
interaction, and use these to identify regimes of entanglement and squeezing that should provide
a guide for future experimental efforts. A comparison of the positive-P method to a simulation
in a number state basis is performed in order to examine the validity of the positive-P methods
implemented. Non-degenerate triplet down conversion is also considered as a more general case.



Student Contribution

The work presented in this dissertation is primarily my own, but has been assisted by various
sources. Here I briefly distinguish between what I have contributed, and where I have received help
or followed other work closely.

The backbone of my work involved solving the system of stochastic differential equations (1.59),
and later (4.2). The code used to solve these equations was provided by Ashton Bradley, and
significantly modified by myself as required. All other code was written solely by myself, although
it should be noted that the code used for the Monte Carlo wave function simulations in Chapter 5
was heavily influenced by example code in the QuantumOptics.jl documentation®.

There are some important results throughout this dissertation which replicate the results of
other work. In Chapter 2, the time evolution presented in Figure 2.1 is an independent replication
and validation of the work of Olsen [1]. The same applies to the removal of pumping (Figure 2.3),
but I include an additional original result here where I began the system away from the vacuum.
The analytic derivation presented in Section 2.3.1 reproduce the results from the work of Bajer [2]
using a different formalism. The corresponding numerical work in Section 2.3.1 is entirely original.
The results of Sections 3.1 and 3.2, and Chapter 4 also independently replicate Olsen’s work.

The core results of this dissertation are presented in Sections 2.3.2 and 3.3, and are entirely my
own. All the work in Chapter 5 is original, as is the discussion of numerics in Appendix B.

!See https://qojulia.org/documentation/examples/jaynes-cummings.html#Jaynes-Cummings-model-1.
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Chapter 1

Introduction

Triplet down conversion is the non-linear optical process of “splitting” one photon into three. In
order to obtain a strong interaction, experimental realisation of the process usually takes place
within an optical cavity - such as a whispering gallery mode resonator - that contains a x(®) crystal
as a non-linearity. High energy photons are supplied to the resonator, and the existence of the
non-linearity allows them to be down converted to lower energy photons. Triplet down conversion
was first observed experimentally as early as 2010 [3], and has interest due to its possible generation
of squeezed light, and more recently for its applications to quantum information [4, 5]. To date
there has been no experimentally measurable quantum entanglement as a result of triplet down
conversion. Theoretical analyses typically implement optical phase space methods to describe the
process, which unfortunately introduce errors. Comparisons of various phase space techniques can
be found in the literature [6], but no comparisons have been made to more exact approaches.

I have investigated triplet down conversion using the positive-P representation of optical phase
space. The work presented here primarily focuses on degenerate down conversion, in which the down
converted photons are indistinguishable. This means that there are only two fields of interest - a
high energy, “pumped”, mode and a low energy, “down-converted”, mode. The time evolution of the
fields is modelled by a set of coupled stochastic differential equations which will be derived in Section
1.5, along with a more in depth discussion of the process of triplet down conversion. First however,
this dissertation begins with an overview of some core ideas pertaining to the representation of
systems in optical phase space, and the modelling of stochastic processes. The presentation of my
results begins in Chapter 2, where I investigate the time evolution of the mode populations and the
steady states that they are found to reach. A focus is placed on a systematic investigation of the
role that pumping plays in the interaction, with has been partially examined in [2], but without
the full inclusion of quantum noise. Chapter 3 examines the fluctuation spectra of the steady state,
focussing on the squeezing and entanglement of the output fields. In Chapter 4 we consider the
more general case of non-degenerate down conversion, in which the down converted photons are
distinguishable. This results in four distinct modes - one pumped, and three down converted, that
can in general be in a quantum entangled state. Finally, Chapter 5 compares the phase space
results to simulations using a Monte Carlo wave function approach. This has not been done before,
and provides an important test of the validity of the positive-P method for this system. A list of
notation used throughout this work can be referenced in Appendix A.



1.1 Review of Quantum Mechanics

States: In quantum mechanics, the possible states of a system are described by kets, which belong
to a Hilbert space. For example, |1)) denotes the state identified by the label 1. The associated
Dual vector, (9|, is called a bra. The inner product between a bra and a ket, (4|, is a c-number!
with the following properties:

(dl) = (¥19)", 1> (¢[¢) =0, (Wly) = 1. (1.1)

It represents the projection of [¢)) onto the state |¢), and is physically interpreted as the probability
amplitude of a system in the state |1)) being measured to be in the state |¢). The actual probability
of measuring the system in |¢) is given by |(¢[)]*.

Operators: An operator, A, acts on kets by mapping them to different kets in the same Hilbert
space. All operators have an “adjoint”, their conjugate transpose, which satisfies

Alp) = |¢) <= (Y|AT = (¢]. (1.2)

In certain cases A will be its own conjugate transpose, i.e. At = /1, in which case it is said to
be self-adjoint, or Hermitian. All observables (anything that can be measured) are represented
by Hermitian operators, and all possible outcomes of a measurement of an observable are given
by the eigenvalues of the corresponding operator. Non-Hermitian operators also exist in quantum
mechanics, and will be used in this work, but do not represent observables. The expectation value
of a measurement of the operator A on the state |t)) is denoted by (A), which is shorthand for the
full expression

(A)y = (WIA[). (1.3)

Bases: A ket can be written as a linear combination of basis states, which can be discrete of
continuous. In a discrete basis we can think of kets and bras as column and row vectors respectively,
and operators as matrices. A basis is said to be orthonormal if its basis kets satisfy

(1]7) = dij (1.4)

and complete if the basis kets span the entire Hilbert space, which is to say

[v) = Z i) (i) = Zci i), (1.5)

for any ket |¢) in the Hilbert space. If a basis is complete and orthonormal we have ), i) =1,
and the identity operator is given by

1= Z i) (] . (1.6)

! A c-number is simply a complex number. The explicit naming is in order to differentiate them from operators.



For a continuous basis, |(¢[1))|? is a probability density rather than a true probability, and (1.4) -
(1.6) are respectively given by

(a]a) = 6(z — o), |¢>:/dx|x><x|w) E/dxw(x) 2}, ll:/dx|x><x|. (1.7)

Later in this work we deal with bases that are not orthonormal, in which case the identity takes a
different form.

Time Evolution: Finally, the time evolution of a ket is governed by the Schrodinger equation,
L0 -
iho [9(1) = H[¢(1)), (1.8)

where H is the Hamiltonian operator. As we see below, there are alternative ways to consider the
time evolution of a quantum system.

1.2 The Density Matrix

The density matrix, p, is often used to describe the statistical state of a quantum system, especially
when we do not know the exact quantum state of the system, such as when we are dealing with
mixed states. It is defined in terms of a discrete basis as

p:ZPn ’¢n><¢n’7 (1'9)

where P, is the probability that the system is in the pure state [¢,). The density matrix provides a
representation of the uncertainty in a system: the outer products account for the inherent quantum
mechanical uncertainty of the quantum state [¢,,), while the P, accounts for any uncertainty as to
which quantum state the system is in. Some useful properties are:

1. The expectation value of an operator acting on the system is
(4) = Tx[Ag], (1.10)

where Tr[-] denotes the trace operation, defined as Tr[A] = > | A|j). Tt is this prop-
erty that gives the density matrix its name, as a (conditional) probability density plays the
analogous role in classical systems.

2. The trace of the density matrix is unity,

Trlp] = 1. (1.11)

3. The density matrix is Hermitian,
pl=np. (1.12)



1.2.1 Closed and Open Systems

Before discussing the time evolution of the density matrix, we make a brief aside. A closed system
is one which is completely isolated from everything else, while an open system is one which is in
“contact” with some other system. In the case that the other system is much larger than the
system of interest, we generally call it a reservoir or the environment. The distinction between a
closed and open system is important, because some formalisms only apply to closed systems. In
the context of triplet down conversion, the system of interest is an optical resonator, which is an
open system as it can exchange photons with the environment. The environment is taken to be a
set of electromagnetic modes in their vacuum state(i.e. unoccupied).

1.2.2 The Master Equation

As the state of a system changes in time, by definition, so will its density matrix. This time
evolution is governed by the master equation, whose form will depend on the physical processes
and approximations involved in a given model. In this dissertation we deal with a master equation
of the form

p = h

Lol ) Y ul2dipd — Lo — 1), (1.13)
(2

where the first term is the von Neumann equation?, and the second is the Linblad term? [7, 8]. The

von Neumann equation describes the time evolution of p for a closed system, while the Linblad term

accounts for dissipation to the environment. Here H i 1s the system Hamiltonian, and J; is the Jump

operator, or Linblad operator, associated with the i*® process involving loss to the environment,

taking place at the rate v; > 0.

1.3 Optical Phase Space

In this section we introduce the idea of optical phase space - the description of a system in terms of
coherent states. We begin by defining the number states, and use these to motivate the introduction
of the creation and annihilation operators, and in turn the coherent states. Section 1.3.6 then
describes some of the common representations of optical phase space, including the positive-P
representation, which is primarily used in this dissertation.

1.3.1 Number States

Generally |1) describes the state of a single particle, in which case we then describe a multi-particle
system by giving the state of each particle in an extended Hilbert space. For example, [1)1) ® [1)2)
could describe the state of a two-particle system. Unfortunately, for reasons I will not go into,
when dealing with indistinguishable particles, this rapidly becomes complicated as the number of
particles and states increases.

2See Appendix C.1 for a derivation.

3There are three key approximations that lead to the derivation of the Linblad form - the Born, Markov, and
rotating wave approximations. I will not present a derivation in this text, but an in depth explanation of these
approximations can be found in Andrew Daley’s review article [7].



Instead of labelling the state of each individual particle, an alternative approach is to state
how many particles are in each single-particle state. Quite generally, we would write the state of a
multi-particle system as

\nl,ng,...,ni,...>, (114)

where n; is the number of particles in the i*" single-particle state.

1.3.2 Creation and Annihilation Operators

The creation operator, &,}L, and its adjoint, the annihilation operator, d;, are defined in terms of the
number states such that

&Z [n1,no,...,n4...) =vni+ 1|ny,ng,...,ni+1,...), (1.15)
ai |ni,m2, ... Ny ...) =/ni|ni,ne, ..., ni—1,...), (1.16)

which is to say they create or destroy a particle in the i*" single-particle state. Additionally, the
number operator, defined as

i = alay, (1.17)
tells us the number of particles in the i*" single-particle state:
ﬁi ]nl,ng, N 7R > =N \nl,ng, RPN 7R > y (1.18)

which can be seen directly from the definitions (1.15) and (1.16).

The commutation relations obeyed by the creation and annihilation operators depends on the
quantum statistics obeyed by the particles corresponding to the states they are acting on*. In this
dissertation we deal exclusively with photons, which are bosons, so we have

[}, al] = [ai,a;] = 0, [a:, a1) = di;, (1.19)

79
where [A, B] = AB — BA is the commutator. 1 will drop the subscript indices as I am only dealing

with two distinct single-particle states. It is instead easier to identify them by different letters, i.e.
a and b.

1.3.3 Coherent States
The coherent states, |a), are the eigenstates of the annihilation operator, which is to say
ala) = alay, (1.20)

where the eigenvalue « can take on any value in the complez plane®, and is often called the amplitude
of |a). With respect to the number states, they are defined as®

o) = e—QIQ/QT;)m In). (1.21)

Some key properties relevant to this dissertation are:

4The many-particle wave function of a bosonic system must be symmetric (under particle exchange), while a
fermionic system must be antisymmetric.

5The eigenvalues of a Hermitian operator must be real-valued, but the annihilation operator is, by definition, not
Hermitian because its adjoint is the creation operator.

5See Appendix C.2 for a derivation.

10



1. The coherent states are not orthogonal, which can be shown directly from (1.21):
(a|g) = e Pl 2 (o — ). (1.22)
When a and 3 are far apart this approaches 0, but when they are close to each other there is
significant overlap between states. We do still have the normalisation (o|a) = 1, which can
be verified by setting § = « in (1.22). To illustrate the overlap of coherent states, note that
the probability distribution of a coherent state in terms of number states is Poissonian:

2
[{nla) P = |{n] ™2 37— )

2

n
]2 « 2

’8 |a)?/2 e ||

Vn!

2. The coherent states form a complete basis; they are described as being over complete due to
their lack of orthogonality.

o™y )"

3. The identity in the coherent state basis is given without derivation as

1=t /an ) al, (1.24)

™

where d?a indicates an integral over the complex plane. This has a form similar to that of
the usual identity (1.7) for an orthonormal, complete basis, but is scaled by 7w due to the
over-completeness of the coherent states.

4. The eigenvalue a can be interpreted as the expectation value of the annihilation operator,
(@), = (alala) = {(alaja) = a, (1.25)
although it is often more relevant to consider the expectation value of the number of particles,
(1), = (@'a)a = |al? (1.26)
1.3.4 Action of Creation & Annihilation Operators

For completeness, the action of the creation and annihilation operators on the coherent state kets
and bras are [9]"

ala) = alay, (1.27)
. o’ 0
al o) = <2 + 8@) o) (1.28)
(aa’ = (o] 7, (1.29)
(o]a = <‘;‘ + ai*> (a]. (1.30)

(1.27) is redundant as it was used to define the coherent states, and (1.29) is also trivial since the
creation operator is the adjoint of the annihilation operator. The other two equations can be shown
from the definition (1.21). As an example, (1.28) is derived in Appendix C.3. The important point
to note is that the action of the creation and annihilation operators on coherent kets and bras can
be written in terms of differential operators with respect to the coherent amplitude «. These will
be useful when determining operator correspondences in Section 1.3.7.

"These are also presented in [9], although slightly incorrect as the factor of % is on the wrong term in (1.28) and
(1.30).

11



1.3.5 Quadrature Operators

Before continuing the discussion of optical phase space, we make a brief aside that will be relevant
later in this dissertation. The quadrature operators are defined with respect to the creation and
annihilation operators as

A A

X =a+al, Y =ifa—all, (1.31)

which satisfy the commutation relation [X' , Y] = 24, and in turn the product of their uncertainties
is governed by the Heisenberg uncertainty relation

AXAY > 1, (1.32)

where AX refers to the standard deviation of measurements of X. It is worth noting that we
define these operators because the creation and annihilation operators are not Hermitian, so can-
not correspond to physical observables. On the other hand, X and Y are Hermitian, so can be
experimentally measured. They are closely related to the & and p operators.

When considering the quadrature operators, a system is said to be in a squeezed state if one of
the operators has a standard deviation less than that of the ground state. Squeezed light has many
practical uses such as in the detection of small phase shifts, and in interferometry [9]. The inequality
(1.32) is always satisfied, so if the standard deviation of one quadrature operator decreases, the
other quadrature operator’s will increase. In their ground state (the vacuum), both quadratures
have a standard deviation of one, i.e. AXAY = AX = AY = 1. An important feature of coherent
states is that they are also minimum uncertainty states in this sense [10].

1.3.6 Representing the Density Matrix in Phase Space

We now consider how a system can be described in terms of the coherent states - this is referred
to as optical phase space, but first it is worth noting why we would want to use coherent states
rather than, say, number states to describe a system. Quantum optical systems tend to be driven
by highly coherent laser fields, which in turn are well described by coherent states. This means
that optical phase space methods scale well numerically, which is in contrast to the number states,
which do not scale as well for quantum optical systems. As mentioned in Section 1.3.3, the coherent
states correspond to a Poissonian distribution of number states. I return to the discussion of phase
space versus number states in Chapter 5.

In Section 1.2 T introduced the density matrix, defining it for a discrete set of states in (1.9).
The natural generalisation to a continuous set of orthonormal states is

p— /daz Px) 2)(z], (1.33)

where P(x) is a probability density function, and acts as a representation of the density matrix in
terms of the set of states {|z)}. This set of states is often taken to be a a set of basis states. It may
be tempting to substitute in |x) = |«) and claim that the resulting probability density represents
the density matrix in terms of the coherent states, but it is not quite so easy. Instead, the analogue
to (1.33) for coherent states is [9]

p= /d2a P(a, o) |a) (o], (1.34)

12



where P(a, a*) cannot be interpreted as a true probability density due to the over-completeness of
the coherent states. We call P(a, a*) the P function, and refer to it as a quasi-probability density.
Also note that « is complex-valued, so we integrate over the complex plane. For the same reason,
P(a,a*) is a function of two variables®. For completeness, it should be noted that an equivalent
definition of the P function is [9]

1
Plo,a*) = = /d2>\ e AN BN N, (1.35)
T
which is a Fourier transform of the characteristic function xp(\, \*)
xp(A ) = ﬂ[pe—wem] (1.36)

(1.35) is useful in the sense that it takes on a similar form to two alternative representations of
optical phase space - the Q and Wigner functions. These are not used in this dissertation, but it is

worth noting that they differ from the P function only by the form of their characteristic functions®:

xXQA,A*) =Tr [pe_)‘*demq, xw (A A*) =Tr [pe_)‘*&”‘dq : (1.37)

More importantly, the representation of phase space used in this dissertation is the positive-P
function, which is a non-diagonal generalisation of the P-function obtained by expanding in terms
of two independent sets of coherent states. It is defined as the function P(a, o) that satisfies [10]

_ 2., 72+ o) (]
d°ad*a’” P(a,« )<a+*\a> (1.38)

where the variables o and o are independent. This can be thought of intuitively by considering
the analogue for a discrete set of bases, which simply involves inserting the identity into (1.9):

p= ZPW Wl =" Py ) (@16) (6] = ZPWWJ (1.39)
»,®

All the phase space functions discussed above can be expanded as needed to include multiple
variables. For example, in this dissertation we primarily deal with two modes, so use P(a, o),
where a = (o, ) and o™ = (o™, B1).

1.3.7 Operator Correspondences of the Positive-P Function

Simply stating a function that represents the density matrix in phase space is not immediately
useful. Ultimately we want to turn the time evolution of the system as given by its master equation
into an equation for P(a, o). The master equation for triplet down conversion is given in Section
1.5, where we see that the only operators involved are the creation and annihilation operators for
each mode. This is a common feature of quantum optical systems, so it is natural to ask “if the

81t may appear unusual that we define a function in terms of o and its conjugate, but this is equivalent to defining
Re[a] and Jm[a] individually. We write it in this form because both o and ™ appear explicitly in the definition of
P(a,a™) in (1.35).

9Note that when dealing with non-commuting operators in exponents, their order matters - so xp, xq, and xw
are all different.

13



creation or annihilation operator acts on the density matrix, what is the corresponding function in
phase space?” These operator correspondences for the positive-P function are'® [10]

ap +— a P(a,at), (1.40)
0
o f +_ 9 +
a'p <a 804) P(a,a™), (1.41)
o+ (a— 9 P(a,a') (1.42)
pa =5 a,a’), .
pal «— o P(a,al), (1.43)

which can be derived by applying the operator actions (1.27) - (1.30) to the density matrix in the
form (1.38). As an example, (1.41) is derived in Appendix C.4. The important point is that in
phase space the master equation takes the form of a partial differential equation (PDE). Due to
the partial nature of the derivatives, these correspondences are easily expanded to more variables.
Before discussing exactly how these correspondences are used in practice to model the time evolution
of systems in optical phase space, I will introduce some important ideas about stochastic processes.

1.4 Stochastic Processes

A stochastic process is one which describes a system whose time evolution is not deterministic, but
is rather governed by probability laws. They play a vital role in this project because ultimately
the mapping into optical phase space results in equations of motion containing stochastic terms, as
will be discussed in Section 1.4.6. There are two over-arching ways to describe stochastic processes:
we can develop equations of motion for either the trajectory of a single path in stochastic motion -
often called a sample path, or for the probability distribution that describes the trajectories of all
paths [9].

The simplest form of non-trivial stochastic processes is a Markov process, in which the future
time evolution of a system is determined by its current state, and not affected by its state at any
previous time [9]. This accurately models most physical stochastic processes. When considering
Markov processes, the equations of motion used to describe a sample path are called stochastic
differential equations'! (SDEs), whereas the equations of motion for probability distributions are
called Fokker-Planck equations (FPEs)'2.

1.4.1 Measurements of a Fluctuating System

The mean of a stochastic variable z(t), denoted by an over-bar, z(t), is the mean of z(t) at
time ¢t. The notation (x(t)) is reserved for quantum expectation values. Multivariate systems
are represented as vector-valued variables, x(t), with @ a corresponding vector containing the
mean of each variable. The variance of z(t),

V{z(t)] = x(t)x*(t) — z(t) z*(t), (1.44)

100More correspondences exist, and further more can be derived from those given, but ultimately they are unim-
portant to this dissertation. Similar correspondences can be derived for the Q and Wigner functions.

HThey are also called Langevin equations in certain physical contexts.

12 A Fokker-Planck equation only describes continuous processes, whereas non-continuous stochastic motion is
described more generally by a master equation. The master equations discussed in Section 1.2.2 are the quantum
mechanical generalisation of a master equation in this context [9].

14



measures the spread of x at the time ¢t. The standard deviation is the square root of the variance.
Generalising to two variables, we define the covariance:

Clz(t1), y(t2)] = z(t1)y*(t2) — z(t1) y*(t2). (1.45)

It gives a measure of the correlation between z(t) at the time ¢; to the y(¢) at the time t5. A
true correlation however is normalised to between +1 via division by the standard deviation of
each variable. It is common to take x = y in order to consider the covariance of x with itself at
different times. In the case of a multivariate system, we can consider the covariance between each
pair of variables as the elements of a matrix. The diagonal elements are the variances, while the
off-diagonal elements are explicitly covariances.

Stationary Processes and the Spectrum: A stationary process is one in which all correlations
depend only on time differences. In particular, the covariance becomes a function of only 7 = to—1;.
In this case, the Fourier transform of the covariance matrix, referred to as the Spectrum, is well
defined. The spectrum is often more convenient to work with than the covariance as a function of
time. Many stochastic systems approximately reach stationary states once transient time evolution
has died out.

1.4.2 Random Variables

A random variable, £(t), is formally thought of as one whose value at each time is selected randomly
from some ensemble. We take £(t) to have an average value of 0, and to be completely independent
from any other random variables, or itself at any other time:

£t) =0, (&) = 656t —t). (1.46)

The Dirac delta in (1.46) may appear unusual or even pathological, but formally £(#) is only defined
within an integral, such as in the definition of the Wiener increment (1.50) below.

1.4.3 Stochastic Differential Equations

A SDE for the variable z(t) can be written in the “Langevin” form as [11]

dx

E = (I[l‘(t), t] + b[l’(t), t] g(t)> (147)
where £(t) is a random variable subject to (1.46). We say that a corresponds to a drift process,
while b corresponds to a diffusion process. This form appears to be extremely general, but it is
shown in [9] that it does in fact meet the requirements of a Markov process. A SDE can also be
written in “Itd form” as [11]

dz(t) = afz(t), t)dt + b[z(t), |dW (¢), (1.48)

which is mathematical short hand for the integral equation

t t

alz(t'), t']dt’ + / blz(t'),t']dW (t). (1.49)

to

o) - alto) = [

to
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The Wiener increment, dW (t), is formally defined by

W(t) = /Otf(t’)dt’ AW = /tt+dt§(t’)dt’, (1.50)

but can often be thought of as dW = &(t)dt. From the definition of £(¢) in Section 1.4.2, we see
that dW (t) = 0, and dW (¢)2 = dt [11], which is to say that the Wiener increment is Gaussian with
a mean of zero and variance of dt. Further specifics of It6 calculus are beyond the scope of this
dissertation.

1.4.4 Fokker-Planck Equations

If the motion of a single trajectory of the stochastic variable z(t) is governed by (1.49), then the
time evolution of p(z,t) the probability distribution of x(t), is given by the Fokker-Planck equation,
which is a PDE of the form [11]

O plx(t),t] 0 1 9 9
il SR t),t t,t} f—[b t),t t,t], 1.51
- o Jale(e), 6 ple(t), 1] + 5 2 [ble (o), 62 pla(0), 1 (151)
where a[z(t),t] and b[z(t),t] are the same as those given in (1.47). A proof of this relationship is
beyond the scope of this dissertation. The important point to note is that a Fokker-Planck equation
only contains first and second order derivatives.

1.4.5 Multivariate Systems

An n—dimensional multivariate system of SDEs can be written in [t6 form as the matrix equation
dx = A[x(t),t]dt + B[x(t),t|JdW(t), (1.52)

where A is the drift vector, BBT = D is the diffusion matriz, and dW (t) is a column vector of
independent Wiener increments'3. The corresponding multivariate FPE is [11]

7 ,]

T 2
PR = = 57 [0 o). 8] + 5 3 [ Dl tix(tne] (159

where A; and [BBT]Z-]- = D;; are elements of the drift vector and diffusion matrix respectively.

1.4.6 The Role of SDEs in Optical Phase Space

The operator correspondences presented in Section 1.3.7 make it clear that a master equation in the
form of (1.13) will be mapped to a PDE for P(a, o) in phase space. This equation can contain first,
second, and potentially higher order derivatives with respect to the phase space variables o and
o™, The usual process is to interpret this as a Fokker-Planck equation, but this can be problematic
because a FPE only contains first and second order derivatives. If higher order derivatives exist
they must be truncated in order to make the mapping to an FPE. If this is required it unfortunately
leads to an incomplete description of the physical process in phase space. For the master equation

13alW(t) is not necessarily n-dimensional. For example, in Chapter 4 we will deal with a multivariate SDE which
has more Wiener increments than variables.
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I am dealing with - which will be given in (1.56) - third order derivatives do exist, due to third
order operator products in the master equation, so truncation is required.

The resulting FPE is still a partial differential equation which can be difficult to solve analyt-
ically or numerically. The usual procedure is to map the FPE to a corresponding SDE [6] via the
relationship between their drift and diffusion terms given in Section 1.4.5 for the multivariate case.
Solving the resulting SDE will provide solutions for the phase space variables. Averaging these over
a large number of trajectories of the SDE will recover the true averages described by the FPE. In
turn this recovers the time evolution of the system governed by the master equation the FPE was
derived from, albeit with the possibility of discrepancies due to truncation.

1.5 Triplet Down Conversion

We have now introduced the background necessary for the development of the equations of motion
for triplet down conversion. The focus of this section is to introduce the master equation that will
model the process, and from this develop a set of (truncated) positive-P SDEs.

As stated earlier, triplet down conversion refers to the process of splitting one photon into three.
Conservation of energy requires that the frequencies of the generated photons add to that of the
original photon. The simplest case to consider is that of triply-degenerate down conversion, in
which the generated photons all have frequency one third that of the original photon. The key
processes involved are shown schematically in Figure 1.1, and discussed in depth below.

The degenerate interaction Hamiltonian is given by [1]

Hipe = ihg [&T% - ai”iﬂ} , (1.54)

where k is the effective non-linearity of the medium in which the process is occurring, which gives
a measure of the strength of the interaction. Technically x should be complex valued, but we
exploit our freedom over the overall phase and take it to be real. BT, b are the bosonic creation
and annihilation operators for the high energy photons, and af, @ are the corresponding operators
for the lower energy mode. The a3b term corresponds to down-conversion - the destruction of one
high energy photon, and the creation of three low energy photons, while the a3b' term corresponds
to the reverse process of third harmonic generation.

The interaction Hamiltonian on its own does not fully describe the physical process when it
takes place inside an optical cavity, as we need to account for interactions with the environment.
The two processes to include are i) the introduction of photons to the cavity via pumping, and ii)
the spontaneous loss of photons to the environment. The pumping is accounted for via the inclusion
of the additional Hamiltonian

Hpump = il {eblA)T - EZA} ) (1.55)

where ¢, represents the strength of the pumping of the high energy photons. It should be thought
of as the classical limit (i.e. many photons) of the annihilation of a photon outside the cavity and
the creation of a b photon inside the cavity. This allows it to be included as a system Hamiltonian,
even though it is the interaction between the system and the environment. (1.55) only supplies
photons to the high energy mode, but an analogous Hamiltonian could be included if the low energy
mode was also being pumped. In experiments the low energy mode often will be pumped in order
to seed the interaction, but I will not consider that here - although pumping is reintroduced to
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Figure 1.1: The key physical processes that must be included in a model of triplet down conversion within
a cavity are the strength of the interaction, the phase and strength of the pumping, and the damping rates
for each mode. An optical cavity is chosen such that i) it can sustain both high and low energy modes, and
ii) it contains a crystal with a non-linearity that allows for down conversion of photons. Supply of photons
to the high energy mode from outside the cavity is modelled in the classical limit of many photons via the
c-number ¢, while loss of photons to the environment is described by the damping rates v, and ~,.

the low energy mode in Section 2.2 for a different reason. Additionally, note that in this model
the only difference between third harmonic generation and down conversion is which mode has the
dominant pumping.

The damping is not represented by a system Hamiltonian, but is rather included via Linblad
terms in the master equation. In the context of triplet down conversion, the jump operators
discussed in Section 1.2.2 are the creation operators for each mode, so the overall master equation
is given by

p= —%[ﬂsys, pl + %[%pfﬂ —alap — pa'a] + %[25;}& — btop — pb'h), (1.56)

where ﬂsys = H int + ﬁpump, and v, and 7, are the damping rates of the ¢ and b modes respectively.

In order to map the master equation (1.56) into phase space, we use the positive-P operator
correspondences (1.40) - (1.43). In the following derivation I compute the resulting PDEs for terms
in the master equation (1.56) corresponding to the interaction, pumping, and damping separately.

1. The portion of the master equation due to the interaction is

—%[ﬁim, ol = g [a*% — a3t ,o} - g [aT%p — 3Bt — pat3h + pa?)éq .

Applying the operator correspondences (1.40) - (1.43), this is mapped to

oP I{,_ 0 3 o 9 3
5| () 0o (7 - g) — e (-5 ) + (o) 7

Expanding brackets yields

aP_E_+ a2 0 +82
ot 3 g/aﬁ 3a 3aﬂ+3a 3a2 80[3 M+O[

P(O[7a+7ﬁ7 BJF)

0 0 0?
_W+a+3% +9%¥_3a26?6++3a80[+25 aO[Hg/BJr (O[,OZ+7B,IB+),
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which can be regrouped in terms of the order of the derivative in each term:

oP . 0 2 0 2 0 7E 3 i
ek laoé(moz+ ﬁ)+@(/{a 5+)+£ < 3¢ ) + 0B+
2 2
+% W(Z‘Qa—i_ﬁ) + ) (2/‘@0(,84_) P(a,a+;ﬁ’ﬁ+)
1| 3 0
~3 [aag (k%) + 55 (68) | Pla, o, 8, 57).

2. The portion of the master equation due to the pumping is

7 A

—— [Hpump, p] = b — €D, p] = eblp — €ibp — eypb’ + € pb.

h

Applying the operator correspondences (1.40) - (1.43), this is mapped to

o’ - eb(ﬁ—;ﬁ) B -+ <5

Cancelling terms we obtain

op [ o )

m“p%®+m%“)”““ﬁ””

and analogously for the a mode if it has pumping included.

)

P(a,oﬁ,ﬂ,/@’ﬂ.

. The portion of the master equation due to the damping of the a mode is

val2apat — atap — palal.

Applying the operator correspondences (1.40) - (1.43), this is mapped to

oP — - +_ 0 9 + + -

ay — a - a9 - a1 P ) s M .

5 = 20 (a 804) « <a 80#) (o, ™, B,87)
Cancelling terms we obtain

op [ 0 o, . P

a5 _8704(7“&)_%(%& )| P, o™, B, B7),

and analogously for the damping of the b mode.
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The overall PDE determining the time evolution of the system in phase space is found by combining
these three equations:

oP 0 0 K 0 K
aﬁ[aJ W)+ g et g (~50°) + g (5a)
0 0 0
*@(% a) — 9 =7 (Va0 )*@(Gb) mﬁ(eg) P(a, ", 8,87)
. » (1.57)
b5 | oy (et ) + oo (26057) | Plas o, B, 67)
3 3
—[ T B) s (8) | Pla ¥, 8, 8%).

The first term contains only first order derivatives, and corresponds to a drift term in a Fokker-
Planck equation. Likewise, the second term contains only second order derivative, and corresponds
to a diffusion term in a Fokker-Planck equation. The third term contains third order derivatives,
so cannot be mapped to a Fokker-Planck equation. Instead we ignore the term by truncating the
PDE to second order. A discussion of the validity of this procedure is provided in Chapter 5.

We now have a multivariate Fokker Planck equation of the form (1.53). The results of Section
1.4.5 tell us that the drift vector and diffusion matrix for the system are given respectively as

Yot + ka2 2kai 3 0 00
+ 23+ +
B YaOm + ka* S T N 0 2k 0 0
a=| 2 53 , BB"=D=| | 0o (1.58)
¢ — sat? 0 0 00

Using the form of a multivariate SDE (1.52), we see that this corresponds to the following set of
coupled SDEs for the phase space variables a, o, 3 and 37:

& = —vaa + kB + /260 B &1 (1)

"= —veat + kBT + /26081 &(1)
B=e— B — gOﬁ, (159)

. K
Bt = e — Bt — §a+3.

where & and & are real-valued Gaussian random variables as defined in (1.46). It should be noted

that these equations are truncated, as discussed in Section 1.4.6. The o and o' equations have

explicit drift and diffusion terms, while the 8 and BT equations only have drift terms - however,

they still undergo stochastic time evolution, but it is included implicitly in the o and o terms.

Computing Moments from the Phase Space Variables: Solving (1.59) will yield solutions
for the positive-P phase space variables a, o™, 8 and BT over time, but these are only related
to physically meaningful quantities in the stochastic averages over many trajectories described by
(1.59). In the limit of many trajectories we recover the statistics described by the associated Fokker-
Planck equation, i.e. at™a™ — (o™ a™), and the same for the 8 terms. Additionally, normally
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ordered operator moments'* can be calculated from the positive-P function [12]:
(a’mamy = /d2a ot " P, ") = (o a™) . (1.60)

Combining these results, we find that stochastic averages of the phase space variables approach
normally ordered operator moments:

afman —s (aIman), BFmpn —s (bTmp). (1.61)

In fact, the only statistics that simulations of (1.59) can recover are operator moments. Of most
interest to my work, and the focus of Chapter 2 are the mode populations (afa) = (n,) and
(b1b) = (7).

1 Normally ordered operator products are those in which all creation operators are to the left of all annihilation
operators. A moment is the expectation value of the product of operators.
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Chapter 2

Time Evolution and Steady States of
the Mode Populations

Chapter 1 has covered some vital background information, and introduced the model that will be
the focus of this dissertation. This chapter begins the presentation of my work by investigating the
time evolution of the mode populations. As outlined in Section 1.5, these are calculated from the
stochastic average of individual trajectories of the phase space variables given by the coupled SDEs
(1.59). This was achieved by running a Monte Carlo simulation of 20,000 trajectories of (1.59) using
the SDE solvers in the DifferentialEquations.jl package for Julia. An in depth discussion of
the numerics involved is presented in Appendix B, where it is shown that enough trajectories are
averaged over in order for the simulations to converge, and that sufficient tolerances were used in
the numerical integration.

The simulations were compared to a semi-classical approximation, which involved dropping the
stochastic terms from (1.59). The argument for this is that on average the stochastic terms will
not significantly influence the overall time evolution, but we will see this is not true. For the
semi-classical simulation we make the convenient choice of initial conditions

a'(0) = ag, BH0) = 55, (2.1)

where ap = «(0), and Sy = $(0). This is to say that both modes begin in a coherent state. The
lack of stochastic terms then fixes af(t) = a*(¢), and the same for 3, which reduces (1.59) to just
two equations

& = ka8 — Y,
. p (2.2)
B = €p — §a3 771257

with o™ and ST being recovered by complex conjugation.
The most physically relevant initial condition would be to begin the system in the vacuum
state, i.e. a(0)=a"(0)=43(0)=p%(0)=0"'. However, inspection of (1.59) shows that the interaction

will not proceed if & and ot are equal to zero?. To get around this I considered starting the

!Note that this still satisfies (2.1).
2This is not physical - it is a result of the truncation discussed in Section 1.3.7. This identifies a limitation of the
phase space methods being used.
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Figure 2.1: Time evolution of the expected mode populations, (n,) and (n;), as given by stochastic integra-
tion of the truncated positive-P SDEs (1.59), and by the semi-classical approximation (2.2). The parameters
used are Kk = 0.001, v, = 27,4, €4 = 574, and €, = 200,,.

system “near” the vacuum, but for the parameters used the damping took o and o to zero before
anything interesting happened. Instead, I implemented the work around used in [1], in which a
weak “seed” pump, €4, is used to drive the a mode. As long as ¢, is relatively small compared to
€p, this shouldn’t affect the overall nature of the time evolution significantly, which is confirmed in
Section 2.2.

Throughout this dissertation we take 7, = 1 (except briefly in section 2.3.1), which provides a
characteristic time scale for all parameters and simulations. In Sections 2.1 and 2.2 the parameters
Kk = 0.001,7 = 27,4, €qa = 57va, and €, = 2007, are used. They are physically reasonable values
that satisfy €, < €. I begin by comparing the time evolution of the mode populations as given
by full stochastic integration of (1.59) to that of the semi-classical coupled ODEs (2.2). I then
investigate techniques for removing the pumping of the a mode once the interaction has begun,
which is desirable for physically relevant results. Finally, the majority of this chapter focuses on
the effect of €, on the time evolution. An emphasis is placed on these, as they provide the results
required for further analysis in Chapter 3.

2.1 Comparison of Stochastic & Semi-Classical Results

The time evolution of (n,) and (ny) as given by both the truncated positive-P and semi-classical
simulations are presented in Figure 2.1. Broadly speaking, the two simulations exhibit consistent
behaviour: as photons are supplied to the b mode, the number of high energy photons increases
rapidly, then reaches a fairly steady number as the damping balances it out. At some critical point
the down conversion of photons increases rapidly, leading to a decrease in high energy photons and
an increase in low energy photons. The exact behaviour at this point differs between the techniques,
but they both agree that a steady state is eventually reached - which is to say (n,) and (n) are
constant in time - and agree on the steady state populations for both modes.

To understand why the semi-classical approximation greatly exaggerates the magnitude of the
oscillatory transient behaviour, it is important to note that individual trajectories of the stochastic
simulation behave similarly to the semi-classical simulation. The key difference is that the oscil-
lations are shifted slightly forward or back in time, as shown in Figure 2.2. It appears that the
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Figure 2.2: The time evolution of (n,) until v,¢ = 15 for three individual trajectories of the truncated
positive-P SDEs (1.59), with comparison to the stochastic average of 20,000 trajectories, and the solution
to the semi-classical approximation (2.2). The parameters used are k = 0.001,v, = 274,64 = 574, and
€y = 2007,.

semi-classical approximation is valid except around the critical point that leads to rapid growth of
(ng) - i.e. the stochastic terms are large enough to noticeably affect when the system reaches this
critical point. It is typical for quantum effects to be most evident near a critical point like this.

2.2 Removing Pumping from the Low Energy Mode

The results presented in Figure 2.1 correspond to a system which has photons supplied to the low
energy mode, albeit significantly slower than the high energy mode. This pumping was introduced
because a system governed by (1.59) will not produce down converted photons without some pump-
ing of the low energy mode. This is a result of the truncation involved in deriving (1.59), so should
not be interpreted as a physical requirement. It is desirable compare the steady states obtained
in section 2.1 with those corresponding to ¢, = 0. There are two techniques that can be used to
achieve this:

1. The first is to run a simulation with the inclusion of ¢, # 0, then set it equal to zero once the
steady state has been reached. This is easily achieved via the inclusion of an if statement
when defining the SDE. For the results presented in this section the pumping is turned off at
t=15.

2. The second is to begin the simulation with ¢, = 0, but in an initial state well away from
the vacuum. This technique was not implemented in Section 2.1 because the time evolution
from the vacuum was desired. If the quantities of interest only involve the steady state -
which tends to be the case in experiments, the exact time evolution is unimportant, and this
technique is valid. For the results presented in this section, the initial values o, o™ = 60 were
used.

The time evolution of systems implementing both of these techniques are compared to the results
from Section 2.1 in Figure 2.3. The two techniques yield consistent results in the steady state,
and unsurprisingly the steady state value of (n,) is slightly less than when the a mode is pumped.
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Figure 2.3: The time evolution of (n,) and (np) when the a mode is pumped compared to two methods used
to set €, = 0 in the steady state. The parameters used are kK = 0.001, v, = 27,4, €5 = 2007,, and €, = 57,
and 0 respectively.

Correspondingly, the steady state value of (n;) is slightly larger. The similarity between the two
steady states is encouraging as it indicates that the inclusion of €, # 0 did not significantly affect
the time evolution. This has been further confirmed by setting e, = 0 at earlier times: for any
time after v,t~5 the time evolution proceeds almost identically (earlier than this the damping is

dominant and takes (n,) to zero).

2.3 Effect of Pumping of the High Energy Mode

Sections 2.1 and 2.2 have presented results pertaining to the single set of parameters x = 0.001, v, =
274, and €, = 2007,, with €, = 0 or 57,. In order to get a better understanding of the system we
now consider the effect of ¢, on the time evolution, and the steady states in particular.

2.3.1 Over-Damped Regime

I begin by considering a completely new set of parameters, which has been used elsewhere in the
literature [2]: kK = 1,7, = 0.1,7, = 10 and ¢, = 0. I refer to this as the “over-damped” regime
because it satisfies the condition ;> 7,. Ideally I would determine the steady states of this system
as a function of €, by running stochastic simulations of (1.59), but this was found to be unstable
for these parameters. However, in Section 2.1, it was shown that the steady states of the ODE are
consistent with the full SDE. Whether this is true for all ¢, is addressed in Section 2.3.2, but for
now I will deal with the semi-classical coupled ODEs (2.2). Working in the over-damped regime
allows for the development of an analytic relationship between the pumping and the steady states
of (2.2). These are compared to numerical results obtained i) using a steady state solver available
in DifferentialEquations. jl, and ii) by running simulations of (2.2). In Section 2.3.2 we will
return to the parameters used in Sections 2.1 and 2.2. The analytic result is not valid in this case,
but the numerical results can still be obtained and will be compared to steady states obtained from
simulations of the coupled SDEs (1.59).
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Analytic Solution

To begin, I solve for the steady states of the ODE analytically. In order to do this I will restrict
myself to the situation in which the damping of the high energy mode is much greater than that
of the low energy mode, i.e. v, > v,. This means that the b mode evolves on a much shorter time
scale than the a mode, so as a result of the adiabatic approximation [13] we can solve for the steady
state of the a mode, knowing that the b mode will be slaved to it. This is referred to as adiabatic
elimination of the a mode. So we begin by setting & = 0, allowing us to determine the steady state
condition on :
3
d:eb—ga?’—%ﬁs:O . g - rBa (2.3)
Vo

where a subscript s denotes a steady state. We can substitute this back into (2.2) in order to
determine a steady state condition on « alone:

ka2[ey, — K/3 ol
Vo

— Yas = 0. (2.4)

Note that (2.4) implicitly includes (2.3), the steady state condition on 3. We proceed by explicitly
writing oy = |as|e? in order to split (2.4) into its phase and magnitude components:

/f\ozs\Qe*iQa[eb — /ﬁ/3]as|3e"39]

- ’7a|043|€i9 =0,

T
2
K€ . K : :
7|Oés‘2€ 20 37%‘043‘5626 _’Ya‘as‘ele =0,
2
K€p . K
las| | — |as|e 139——\055\4—% =0.
Vo 3

This has factorised the solutions for |as| into two sets:

1. There is an obvious trivial solution,

as = 0. (2.5)

The corresponding solution for the b mode is found from (2.3) to be 85 = .

2. Of more interest are the non-trivial solutions, found by solving the quartic

2
K€p —-i30 _ k 4

—|agle — —|ag|" — v =0, 2.6
W |cxs| 3%’ s Ya (2.6)
of which I will consider the phase and magnitude separately. Note that because k, v, and
are all real and positive, the last two terms lie along the negative real axis. So in order to
satisfy the equation, the first term must lie along the positive real axis, i.e.

K€p

o |67i39 _ Eib'y”'|eb|
s

el w

|ag|e Y is real and positive. (2.7)
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Figure 2.4: The steady state values of |a| as a function of the pump intensity e,. The dashed lines indicate
unstable solutions, and the dotted “tail” is not a true steady state. The non-trivial solutions begin at
€y = 4/3. The parameters used are k = 1, 7, = 0.1,, = 10 and ¢, = 0 (satisfying v, < 7p).

I have introduced the factor of % = 1 because é—; has unit magnitude while %bb‘ has no
phase. In terms of phase I can therefore write

Ebemi30 ]y [0 = b = arg(ep), (2.8)
€| €

which specifies 3 solutions for . We can substitute this result back into (2.6) and solve for
the magnitude of ay:

2
K|ep K 3len
| ||as|—3%as’4—%:0a or Jous [ — L |

3
|| + 7:2% —0, (2.9)

which is a quartic I was able to solve on Wolfram Alpha.

Both the trivial and non-trivial solutions for |a,| are plotted as a function of ¢, in Figure 2.4(a). We
see that there are two non-trivial solutions, and that they are only realisable above some critical
pumping threshold. There is no connection between the trivial and the non-trivial solutions. The
two non-trivial solutions branch away from each other as the pumping increases, indicating that
stronger pumping of the b mode can lead to either more or fewer photons in the a mode. However,
we will see below that the lower branch is not stable. Note that the non-trivial solutions for oy are
triply degenerate due to the three different solutions for the phase. The results presented here are
in agreement with those derived by Bajer [2].

Numerical Solution

In order to determine the steady states numerically, I used the DifferentialEquations. j1 package
for Julia to set up the coupled ODEs (2.2) as a SteadyStateProblem. This was solved for various
values of €, and the results are presented in Figure 2.4(b). Additionally, simulations of (2.2) were
run, and the resulting steady states are also plotted in Figure 2.4(b). These numerical methods
do not explicitly require 7, > 7,, but the same parameters are used as for the analytic result, so
the condition still holds. The steady state solver is exactly consistent with the analytic solution,
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Figure 2.5: The time evolution of |a| and |5| for an initial state taken to be on the “tail”. Evidently this
is not a steady state, as |a| and |3] change over time. The dashed lines indicate the (stable) steady state
values associated with the trivial o = 0 solution.

except for an additional “tail” leading off from the bifurcation point. This is not a physical result,
but rather a numeric issue, which can be seen by running a simulation of (2.2) with an initial state
taken from the tail. The resulting time evolution is displayed in Figure 2.5, which shows that it is
definitionally not a steady state.

The stability of the other solutions was tested numerically: the trivial solution and the upper
branch are always stable, while the lower branch is unstable. These results are indicated in Figure
2.4(b), and match the analytic results presented in [2]. We see in Figure 2.4(b) that the simulations
of (2.2) are consistent with the other results, and unsurprisingly lead to steady states corresponding
only to the stable solutions. However, note that above the bifurcation point the trivial solution
is stable, but there are no corresponding steady states from the simulation. To explain this it is
useful to explicitly note that above the bifurcation point there are two stable solutions predicted
by the steady state solver, but a simulation of the system can only ever finish in a single steady
state. Variables such as the initial state of the system would affect which stable state is reached.
For the simulation presented here, the initial state was ag = 1.2, away from the vacuum so that
we could take ¢, = 0. A comparison of the steady states for various initial states is presented in
Appendix D.1. As an extreme example, note that a simulation of a system with the initial state in
the vacuum, and with ¢, = 0, would have lead to steady states only on the o = 0 solution.

The corresponding steady states for |3| are given in Appendix D.2. They provide limited
additional insight, but it is interesting to note that increasing ¢, leads to fewer b photons on the
stable branch.

2.3.2 Original Parameters

We now return to the parameters k = 0.001, and v, = 27,. Their steady states were determined as
a function of €, by running simulations of both the semi-classical ODEs (2.2), and the full truncated
positive-P SDEs (1.59). The results are compared to those of the steady state solver introduced
in Section 2.3.1. The analytic result from the previous section can not be used here because the
b > v, condition does not hold. I begin by taking e, =0, as above, but finish by considering the
effect of €, #0 on the steady states.
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Figure 2.6: The steady states of |« as a function of the pump intensity e, as given by three simulations, and
the steady state solver. The results only differ around the transition from the a=0 solution to the upper
branch. Temporary introduction of €, # 0 (blue circles) shifts the transition to lower €,. The corresponding
steady state values for |3] are presented in Appendix D.2. The parameters used are x = 0.001 andy, = 2v,.
The two stochastic simulations (blue circles and orange squares) were run until v,¢ = 150, and averaged over
20,000 trajectories.

Unpumped a mode

The steady states given by all three simulations, and the steady state solver, are presented in Figure
2.6 for the case that ¢, = 0. The “tail” given by the steady state solver has been identified and
removed. All three simulations had the initial state « = o™ = 60, but differed in various ways:

Sp: A stochastic simulation of the coupled SDEs (1.59), taking ¢, = 0 always.

Sy: A stochastic simulation of the coupled SDEs (1.59), taking €, = 5 until v,¢ = 20. This may
seem unnecessary, but the results are different from those of Sy, which leads to an interesting
discussion.

S3: A simulation of the semi-classical coupled ODEs (2.2), with ¢, = 0.

The general shape of the results given by the steady state solver is the same as those for the
parameters used in Section 2.3.1. Away from the bifurcation point the simulations match the
stable solutions extremely well, and as above, no simulation leads to a steady state on the unstable
branch. This has been confirmed for ¢, ranging from 0 to 3007,, but the range of values plotted is
restricted in order to focus on the transition from the o = 0 solution to the upper branch as ¢, is
increased. In this region the simulations differ from each other and the steady state solver in two
crucial ways. Firstly, the three simulations transition from the a=0 solution to the upper branch
at different values of €;,. Secondly, the stochastic simulations result in steady states at a seemingly
continuous range of values between the two stable solutions predicted by the steady state solver.
I refer to these steady states as the intermediate values. In order to understand these differences,
it is important to remember that the stochastic simulations are averaged over 20,000 trajectories,
so the steady states don’t necessarily correspond to individual trajectories. This is emphasised in
Figure 2.7, which shows the time evolution of S7 for ¢, = 757,. We see that all the individual
trajectories end at either o = 0, or fluctuating around the upper branch. Whereas for most values
of ¢, all the individual trajectories follow the same general path (neglecting small fluctuations), the
intermediate values are a physically meaningful artefact of averaging over some trajectories that go
up and some that go down.
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Figure 2.7: The time evolution of |«| for individual trajectories of the truncated positive-P SDEs (1.59),
with comparison to the stochastic average over 20,000 trajectories. The individual trajectories always end
up around the stable solutions predicted by the steady state solver, but their stochastic average has a
steady state that does not correspond to a solution of the steady state solver. The parameters used are
k= 0.001,7, = 27v4,€, = 0, and €, = 757,.

Notice that the value of ¢, at which the semi-classical steady states jump to the upper branch
corresponds to the point at which half of the trajectories from S are reaching the upper branch.
This is because the two simulations correspond to an identical system®. However, Sy corresponds
to a system that has ¢, #0 until v,t=20. To understand why it transitions to the upper branch at
a smaller value of ¢, it is useful to consider the time evolution of the three simulations, which is
presented for selected values of €, in Figure 2.8. In S; the steady states are constant in time (i.e.
they are steady states), indicating that, as expected, both the trivial solution and the upper branch
are stable. In So, the inclusion of €, # 0 has pushed some paths to the upper branch even though
they go to =0 in 57 and S3. When the pumping is turned off, most of the steady states remain in
the upper branch because it is stable. However, close to the bifurcation point the upper branch is
not actually stable for the SDEs (1.59), which can be seen by the fact that the €, = 71.57, solution
(orange line, Figure 2.8) tends towards the aw=0 solution. In fact, the intermediate values for S,
in Figure 2.6 are not in fact steady states - they correspond to paths that haven’t reached o = 0
yet?. All the paths corresponding to intermediate values in S; have had all trajectories pushed to
the upper branch in S5, where they are stable. In some respects there is no such thing as a stable
solution for an SDE, but in practice we see that away from the bifurcation point the upper branch
is essentially stable. From now on I will refer to this as “well above the critical pumping”, even
though we have shown there is no well defined critical pumping.

Finally, before considering the effect of including €, #0 in the steady state, I will briefly mention
the transient behaviour of the time evolution itself. The simulations in Section 2.1 exhibited
oscillatory behaviour before reaching their steady state, and this behaviour is also exhibited in
Figure 2.8, but only for the larger values of ¢,. There is some kind of transition between an
under-damped and over-damped regime, which coincides with the transition to the upper branch.

3As in Section 2.3.1, the initial state will affect the point at which this transition occurs. See Appendix D.1.

4Individual trajectories drop from the upper branch to the trivial solution rather fast, but the stochastic average
moves rather slowly because it won’t reach zero until all 20,000 trajectories have tunnelled away from the upper
branch.
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Figure 2.8: The time evolution of || for simulations S; — S3 of the truncated positive-P SDEs (1.59)
corresponding to five representative values of the pump intensity e,. The corresponding plots for |3| are
presented in Appendix D.3. The parameters used are x = 0.001, and 7, = 27,, and 20,000 trajectories were
averaged over for the stochastic simulations S; and Ss.

Pumped a mode

We now briefly look at the case in which the a mode is pumped in the steady state - primarily as an
exploration of how the results differ from the unpumped case. Figure 2.9 shows the steady states
as a function of €, as given by the steady state solver, for ¢, between 7+, and 12v,. Both stable
and unstable solutions are included, but the tail has been removed. The results are compared to
those obtained via stochastic integration of the truncated positive-P SDEs (1.59).

For the lowest value, ¢, = 77,4, the overall shape of the relationship is very similar to the
unpumped case - the only differences are that the =0 solution is now bounded below by approx-
imately 7°, and connects to the lower branch (around €, = 737,). As the pumping of the a mode
increases, the connection to the o = 0 solution moves closer to the bifurcation point, and above
threshold ¢,, the upper branch and the =0 solution merge into a single stable solution, and split
away from the unstable solution. Interestingly, the shape of the unstable solution barely changes
as €, is further increased.

Above the critical value of €,, where there is only one stable solution, the simulations are in
agreement with the steady state solver. For smaller values of ¢, we observe the same pattern of
intermediate values as the unpumped case.

2.4 Summary

In this chapter we considered the time evolution of the mode populations, and identified that
they reached steady states. An analytical examination of the steady states in the over-damped
regime produced results in agreement with the work of Bajer [2]. A careful numerical investigation
of the steady states for a range of pump values near the critical pumping was performed using

5T will still refer to this solution as the =0 solution however, as it is a useful label for distinguishing between the
solutions.
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Figure 2.9: A comparison between the steady states as a function of the pump intensity ¢, predicted by both
the steady state solver and stochastic integration of the truncated positive-P SDEs(1.59), for a range of ¢,.
Above some critical value of ¢, there is only one stable solution, and two techniques are in close agreement.
Below ¢, =~ 10 the mean field permits intermediate values between the stable solutions. The parameters
used are k = 0.001, and v, = 2v,. The simulations were averaged over 20,000 trajectories, and run until
Yot = 150.

both semi-classical and truncated positive-P phase space methods. We identified stable regions
for the intra-cavity fields and showed that around the critical pumping quantum fluctuations shift
the steady state populations away from semi-classical predictions. The importance of quantum
fluctuations near critical values is well known in many other quantum optical systems. These
results will be used in the following chapter to examine the squeezing and entanglement of the
output fields as a function of €.
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Chapter 3

Steady State Fluctuation Analysis

As discussed in Chapter 2, the expected number of photons in each mode has a well defined steady
state. In this section we consider fluctuations of the output field about the steady state mean field.
In particular this provides insight into the squeezing and entanglement of the modes, both of which
are experimentally measurable quantities of interest. We exploit the fact that the the steady state
is described by a stationary process, and consider the spectrum of fluctuations by looking at the
covariance matrix (defined in Section 1.4.1) as a function of frequency rather than time. I begin
by considering the fixed set of parameters used in Section 2.1: x = 0.001,v, = 274,64, = 0, and
€y, = 2007, then investigate the squeezing and entanglement as a function of ¢, in Section 3.3.

In order to consider fluctuations about the steady state, we explicitly write the phase space
variables in terms of their steady state expectation values plus some small fluctuation:

a(t) = (o), + da(t), (3.1)

where a = (o, a, 3, 87), (a), is a corresponding vector of steady state values, and dex is a cor-
responding vector of small time-dependent fluctuations. Note that due to the time-independent
nature of (o), the time evolution of Ja will be the same as that of a up to a constant offset. We
assume that the fluctuations are relatively small, allowing us to linearise the equation of motion. In
order to determine the time evolution of the fluctuations, we begin with the coupled SDEs (1.59),
and linearise the time evolution of a due to the drift and diffusion terms separately:

Drift: When considering the time evolution due to the the drift terms in (1.59), we drop any terms
of second order or higher with respect to the fluctuation terms!:

Qarife = —Ya0t + k2B,

—va(as + 6a) + k(o + 6a)(af + 6a™)(Bs + 0B),

= —Ya0rs — Yaba + K[ar2 By + 20 B0a + 5ot By + at25B + 200t 68 + a5 ),
N —Yalts — Yaba + K[a2Bs + 20k B0at 4 28],

= s — Yaba + 2k0 Bda + ka2, where ¢ = 0 by definition,
= —y.0a + 2ka’ Bsda + ka6

'Note that we take af = a? in the semi-classical limit of many photons.
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The other terms are derived analogously, and given by

dgrift = — 7 00 + 2ras B0 + ka2,
Barite = — 08 — kada,
B(]Lrift = —oB — /iaféoﬁ.

sion: When considering the time evolution due to the diffusion terms in (1.59), we have

G = /2Rt B & = 1/ 26(c + 6a) (B, + 68) &1, (3.2)

and analogously for &". The 8 and T equations have no diffusion terms. Far above critical
pumping, the fluctuation terms will be much smaller than the steady state values, so we
approximate this term by neglecting them. So the two diffusion terms are

Gaig = \/ 2k Bs &1,
d—giﬁ = \/2Ka8% .

It is important to note that this argument would not have held for the drift terms because,
after linearisation, the remaining steady state terms summed to zero, leaving only the fluc-
tuation terms. It may also seem that this argument does not apply to the a mode below the
critical pumping. However, for the reason that oo = 0 here, i.e. the ¢ mode is in the vacuum,
there are no fluctuations (the only uncertainty, as we will see, is the inherent uncertainty of
the vacuum).

Putting these all together, we see that we can write

dé
Tta = —Ada+BE(t) +—  déa=—Abdadt+ BdW, (3.5)
where
Ya —2KaiBs  —kat? 0 2K Bs 0 00
| —2kaspE Ya 0 —Ka? T oA 0 2kasfBy 0 0
A= Ko 0 W 0 |’ BB =D = 0 0 00 (3.6)
0 mxf 0 Vb 0 0 0 0

Note that in the linearised equation of motion, (3.5), the drift vector has the form of a constant
matrix, A, multiplied by d«, and that the drift matrix, B, is a constant with no dependence on
dav. This is the form of a multivariate Ornstein-Uhlenbeck process, which is a well known subset of
stochastic differential equations. It is shown in [9, 11] that the covariance spectrum of a multivariate

Ornst

ein-Uhlenbeck process is given by

S(w) = (A+iwl) 'BBT(AT —iwl) 71, (3.7)

with A and B defined in (3.6), and 1 the identity matrix. Currently, (3.7) is the spectrum with
respect to the creation and annihilation operators, which are not Hermitian, so cannot correspond to
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physical observables. It is therefore desirable to write the spectrum with respect to the quadrature
operators defined in Section 1.3.5. This is given by [1, 10]

1 1 0 0
- 3% 0 0

S9(w) = QS(w)QT, where @ = OZ (Z) 11 (3.8)
0 0 —2 1

The elements of S?(w) tell us the covariances of the quadrature operators within the cavity, where the
interaction is taking place. The output spectra, which is what would be measured experimentally,
is related to the intra-cavity spectra via the damping rates of the modes [14, 10], so the covariances
that would be experimentally measured are

C[Xi, Xj](w) = bij + A7 (SE, + 5%,), (3.9)

and similarly for the Y quadratures. The second term in (3.9) gives the (output) covariances due
to the interaction, which have been derived above, while the Kronecker delta corresponds to the
variance due to the background uncertainty of the vacuum: from Section 1.3.5 we know AX; =1
in the vacuum, so C[X;, X;] = V[X;] = AX? = 1, while C[X;, X;] = 0 because the two modes are

uncorrelated in the vacuum.

3.1 Squeezing

The first property of the output fields we examine is the squeezing of both modes. Recall from
Section 1.3.5 that a mode is squeezed if measurements of either of its quadrature operators have a
variance of less than one. Using the steady states from the simulations in Section 2.1 to construct
the spectrum matrix, the variance of each quadrature is shown as a function of frequency in Figure
3.1. Both Y quadratures have variances less than one, which means that both modes are in a
squeezed state. It has been verified that AX,AY, > 1 and AX,AY, > 1 for all frequencies, which
can qualitatively be seen by the fact that the variance in the X quadratures increases significantly
when the variance in the ¥ quadratures dips.

The results presented in Figure 3.1 correspond to steady states in which the low energy mode is
pumped, albeit significantly less than the high energy mode. As a comparison, Figure 3.2 presents
these results alongside the case that ¢, = 0. Removing the pumping leads to slightly increased
squeezing, but the overall spectrum is unaffected. It has been verified that the uncertainty products
are greater than one for all frequencies in the unpumped case.

3.2 Bipartite Entanglement
The other property of the output fields we consider is whether the high and low energy modes are
entangled. In order to investigate this, we use the Duan-Simon inequality [15, 16]:

DS. = V(X;+ X))+ V(Y; FY)) > 4, (3.10)

which holds for classically behaved states. It is known that if either DS or DS_ are wiolated, then
the two fields are entangled. Figure 3.3 shows DSy as a function of frequency for both ¢, = 0 and
5. We see that in both cases the DS_ inequality is violated in two frequency regimes, indicating
that the fields are entangled.
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Figure 3.1: The spectrum of quadrature variances, calculated using (3.9) for steady states obtained by
simulations of the semi-classical approximation (2.2). Both Y quadratures have variances less than one,
which is to say that both modes are squeezed. The parameters used are k = 0.001, v, = 27,4, €, = 57V, and

e = 2007,.
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Figure 3.2: A comparison between the quadrature variances when the low energy mode is and is not pumped
(éa = 57, and 0 respectively). The e, = 5y, results are a replication of those presented in Figure 3.1. The
overall form of the spectrum is unaffected. The parameters used are k = 0.001,7, = 274, €4 = 57v4, and

€p = 2007(1.
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Figure 3.3: The Duan-Simon spectra for the cases when the low energy mode is and isn’t pumped (e, = 57,
and 0 respectively), calculated using (3.10) for steady states obtained by simulations of the semi-classical
approximation (2.2). The DS_ inequality is violated in two frequency regimes, indicating entanglement
between the modes. The inclusion of ¢, = 57, has a minimal effect. The parameters used are x = 0.001, v, =
274, and €, = 2007,.

3.3 Effect of Pumping Strength

In this section, I present a systematic analysis of the squeezing and entanglement of the modes in
degenerate triplet down conversion as a function of the pump intensity of the high energy mode.
As shown in Section 2.3.2, the steady states of the system depend on various quantities such as the
initial state of the system, and any pumping of the a mode. The following discussion focuses on
systems with ¢, = 0 in the steady state.

The overall behaviour of the spectra is investigated using the steady states obtained by the semi-
classical simulation S3 from Section 2.3.2. The semi-classical simulation provides a set of physical
steady states, but neglects some of the interesting behaviour that can occur around the critical
pumping, so a careful study of the critical region is also presented using the truncated positive-P
approach. This is achieved using the steady states given by simulation S7, which correspond to the
orange squares in Figure 2.6, and with time evolution given in Figure 2.8(a).

3.3.1 Semi-Classical Simulations

Squeezing: Figure 3.4 shows the spectrum of variances of the X and Y quadratures for both
modes as a function of €,. Both X quadratures display the same behaviour, as do both Y quadra-
tures, although the magnitude is consistently larger for the b quadrature. We see that below the
critical pumping all four quadratures have a variance 1, i.e. that of the vacuum. This is unsur-
prising because the ¢ mode is in a vacuum state below the critical pumping, which corresponds
to a minimum uncertainty state. At the same time, the b mode will be a pure coherent state (as
it is being coherently pumped with no down conversion), which is also a minimum uncertainty
state. Above the critical pumping both Y quadratures have a variance less than one at all values
of €, indicating that both modes are always squeezed. The magnitude of the squeezing reduces as
the pumping increases, and the maximal squeezing moves towards larger frequencies. Immediately
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above the critical pumping the b mode is maximally squeezed at zero frequency, while the peak
squeezing of the a mode is away from zero frequency.

Entanglement: The bipartite entanglement between the modes is investigated using the Duan-
Simon inequalities (3.10). The results are presented in Figure 3.6, where we observe similar be-
haviour to the squeezing. The DS_ inequality is never violated, but the DS, inequality is violated,
implying the two modes are entangled, for all values of ¢, above the critical pumping.

3.3.2 Stochastic Simulations

I now consider the results of the stochastic positive-P simulation S; (with steady states corre-
sponding to the orange squares in Figure 2.6, and with time evolution given in Figure 2.8(a)). In
Section 2.3.2 we saw that away from the transition region, these steady states matched those of
the semi-classical simulation exactly. Therefore, the results presented in this section will focus on
the region 657, < €, < 857,, about the critical pumping, where the results differ significantly from
Section 3.3.1 due to the stronger effects of quantum fluctuations near critical pumping.

Squeezing: The variance of each of the four quadratures is presented as a function of ¢, in Figure
3.5. In all four plots we see that, as would be expected, there is no well defined critical pumping,
and that the dominant behaviour is actually located within the transition region. Considering the
X quadratures, we see that both modes have their greatest variance in the transition region, and
that this occurs about zero frequency (i.e. the long time limit). Turning to the Y quadratures we
see that both modes are squeezed in the transition region, but the behaviour is different for each
mode. Whereas the squeezing of the b mode gradually decreases with ¢, in the transition region, the
a mode exhibits its strongest squeezing in the transition region. Additionally, this occurs around
zero frequency, corresponding to the long time limit.

Entanglement: DS_ are presented as a function of ¢, in Figure 3.7. Both spike abruptly around
zero frequency in the transition region about zero frequency. Entanglement extends partially into
the transition region, but is otherwise relatively unaffected.

3.4 Summary

In this chapter we calculated the spectrum of covariances from the steady states of various simu-
lations in Chapter 2. This was used to determine the squeezing of both the high and low energy
modes, and their entanglement to each other in the output field. Semi-classical steady states pro-
vided results well above the critical pumping, while truncated positive-P steady states were used
to correct for quantum fluctuations in the transition region. Below critical pumping, both modes
are in a minimum uncertainty state. We found the fields to be squeezed and entangled at all values
of €, corresponding to states with non-zero populations of @ mode photons.
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Figure 3.4: The spectrum of quadrature variances as a function of the pump intensity €, calculated using
(3.9) for steady states obtained from the semi-classical simulation Ss. Note the scale differs between plots.
The system is most squeezed close to the critical pumping. Figure 3.5 examines the region around the critical
pumping using the stochastic simulation S;. The parameters used are x = 0.001,y, = 2,, and ¢, = 0.
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Figure 3.5: The spectrum of quadrature variances as a function of the pump intensity €, calculated using
(3.9) for steady states obtained from the stochastic simulation S3. A log scale is used for the X quadratures
for ease of visualisation. The a mode is strongly squeezed in the transition region, but squeezing of the b
mode is essentially unaffected. The parameters used are k = 0.001,, = 27,, and €, = 0. 20,000 trajectories
were averaged over.
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Chapter 4

Non-Degenerate Triplet Down
Conversion

Chapters 2 and 3 have considered the process of degenerate triplet down conversion, in which the
three down-converted photons are indistinguishable and the time evolution is governed by (1.59)
in the truncated positive P representation. This chapter turns to examine the process of non-
degenerate triplet down conversion, in which the three down-converted photons are distinguishable,
namely in energy (frequency). The interaction Hamiltonian is the natural generalisation of the
degenerate case

i = it [alafalb - blarazas| (4.1)

and pumping of all four modes is modelled via the inclusion of four pumping Hamiltonians, anal-
ogous to (1.55). When mapped into optical phase space using the positive-P representation, the
resulting PDE has third order derivatives [1], but we perform the usual truncation procedure and
arrive at the following SDE! [1]

&y = €1 — a1 + kabal B+ \/ kol B/2(61 + i&2) + \/ kol B/2(E3 + ia),

&f = €] —maf + kagasBt + \/rasB/2(& + i&e) + V/ KaeBT/2(&7 +iks),

dy = €3 — yog + KAl o B+ \/ ko B/2(E1 — i&2) + \/ ka] B/2(& + i),

d—g = €§ — ’)/20[5 + ﬁa1a35+ + ma3ﬁ+/2(§5 — 7156) + Hozlﬁ+/2(§11 + iflg), (4'2)

Gy = €3 — Y3a3 + KO Y B+ [ KAl B/2(E3 — i) + \[Kai] B/2(E — ikr0),
a5 = €5 — y3ah + karaaft + \/raaft/2(& — i&s) + ka1 BT /2(6n — iki2),
B =€y — B — Karagas,
B=e — Bt — katafal.
Inspection of (4.2) shows that the process will not proceed from the vacuum unless at least two
of the low energy modes are pumped?, so my simulations include weak® pumping of both the a;

'Note that this SDE has non-diagonal noise, which is in contrast to the degenerate case: each equation in (1.59)
has its own noise term, while there is mixing of noise terms between equations in (4.2).

2As above, this is a result of truncation.

3As in Chapter 2, “weak” here refers to €1, €2 < €.
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Figure 4.1: The spectrum of variances for the three X, quadratures in the cases when the a; and as modes
are pumped and not pumped in the steady state (e, , €4, =107,, and 0 respectively). The other parameters
used are k = 0.001, vy = 2,,, and €, = 2007, .

and ao modes. This can be turned off once the system is in the steady state. I began by solving
(4.2) using the SDE solvers in DifferentialEquations.jl, but it was unstable, so I could not
run many trajectories. However, we know that for the degenerate case the semi-classical ODE gave
steady state results consistent with the full stochastic SDE, and ultimately I am most interested
in the steady state, so I have instead used the following semi-classical ODE

. * *

1 = €1 — Y101 + Kapasf3,

. * *

(g = €3 — Y202 + Kajazf3, (4.3)
. * * *
Gz = €3 — Y303 + K s,

B =€, — WP + Kajazas,

which is obtained by dropping the stochastic terms and taking the initial condition to be a coherent
state. The steady state spectra of squeezing and entanglement obtained from this semi-classical
approach are presented below. Throughout this chapter we take v,, = 1 for all three low energy
modes, which provides a characteristic time scale for all parameters and simulations.

4.1 Squeezing

We begin by considering the squeezing of the low energy modes. Figure 4.1 shows the variance of
the three X quadratures for systems both with and without pumping in the steady state. In the
pumped case the X,, quadrature differs slightly from the other two because only the a; and as
modes are pumped. In the case that the pumping is removed, all three modes unsurprisingly have
the same spectrum. Importantly, all three of the low energy modes are squeezed in both cases. For
completeness, Figure 4.2 shows the variance of the three Y, quadratures. We see that there is a
region where the variance of the Y, quadratures is less than one, contributing to the squeezing of
the modes. It has been confirmed that the uncertainty principle is not violated at any frequency.
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Figure 4.2: The spectrum of variances for the three Y, quadratures in the cases when the a; and as modes

are pumped and not pumped in the steady state (e, , €4, =107,, and 0 respectively). The other parameters
used are k = 0.001, vy = 2,,, and €, = 2007, .

It is important to note the differences from the degenerate case. Firstly, in the degenerate case
we only ever had AY < 1, but in this case both quadratures have regions where they have variances
less than one. Secondly, in the degenerate case the squeezing is most pronounced for frequency
elements around w/v, = 5, while here it is about zero frequency, which corresponds to the long
time limit.

We now consider the squeezing of the b mode. Figure 4.3 shows the variance of both the Xj
and Y quadratures in the case of both pumping and no pumping of the low energy modes. In both
cases the Y, quadrature has a variance of less than one, indicating that the b mode is squeezed.
Comparing the pumped case to the results in Figure 3.1, we see that the spectrum of variances
for the b mode is very similar to the degenerate case. However, there is a key difference in the
pumped system - the Y, quadrature has a spike in its variance at zero frequency. It appears as
though the squeezing of the b mode is strongly dependent on the quantum state of the a mode in
the steady state. The decrease in squeezing occurs around zero frequency, which is consistent with
the inclusion of a constant pumping to the a mode (a feature at zero frequency).

4.2 Entanglement

We now turn to consider entanglement in the non-degenerate system. In the degenerate case,
we investigated the bipartite entanglement between the modes using the Duan-Simon inequality
(3.10). I did the same for every combination of two modes for the non-degenerate case, but found
no evidence of any bipartite entanglement.

However, now that there are more than two distinct modes, we can also consider multipartite
entanglement. When dealing with systems of more than two distinct modes, the discussion of
entanglement is more complicated because there is the idea of partially-separable states. There
are various measures that can be used to quantify the entanglement, but for the purposes of this
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dissertation I will consider the following inequality developed by Olsen, Bradley and Reid [17]:

OBR;;1 + OBRjz; + OBRy;; > 1, (4.4)

where
OBR,;x = VO X vy, 45
ijk = 1nf[ ’] 1nf[’L]’ ()

and the tripartite inferred variances are defined as [18]
oA \2
(C[Yi, Y; + Yk])

o N2

C XZ)X] X, v A

( [ + k]) v® Y;] = V[Y;] — V[Y + f/]
T+ Y

vOIX] = VX)) - —, ot
V[Xj+Xk,]

inf

(4.6)

When (4.4) is violated, steering is demonstrated between the 4, j and k¥ modes. Steerable states are
a strict subset of entangled states. The results for the three down converted modes are presented
in Figure 4.4, where we see that they are entangled at low frequencies. The violation is slightly
reduced in the pumped case. No violation of the inequality was found for any other combination
of three modes, shown in Figure 4.5 for completeness. It is possible that they are still entangled,
but steering is not exhibited.

4.3 Summary

We investigated the process of non-degenerate triplet down conversion by considering the spectrum
of quadrature variances in the steady state for a single set of parameters. We found that all four
modes are squeezed, and tripartite entanglement is exhibited between the three down converted
modes. The squeezing of the b mode appears to be strongly dependent on the steady state of the
a mode, as the inclusion of a small coherent signal to the a mode (via ¢, resulted in loss of b mode
squeezing at zero frequency.
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Chapter 5

Monte Carlo Wave Function
Simulation

The focus of this dissertation has been the application of optical phase space methods to investigate
the process of triplet down conversion. Phase space has been used because the field produced
by a highly stable laser operating well above its lasing threshold is exactly a coherent state, so
they provide a convenient representation for quantum optical systems compared to, say, a number
state basis. However, the positive-P SDEs that I have simulated throughout this dissertation are
not exact, and the results I have obtained could differ from the physical process of triplet down
conversion due to some key points at which errors may have been introduced. The first is that 1
am describing a physical process using a mathematical model which includes some approximations.
Ultimately only comparison to experiments can determine the accuracy of the model, although it
should be noted that master equations in Linblad form successfully describe many quantum optical
systems under the correct approximations. Secondly, when mapping the master equation (1.56)
into phase space we truncate the third order derivatives of the resulting PDE in order to make the
mapping to an SDE. One way this has manifested itself is that down conversion would not proceed
from the vacuum in my simulations without the addition of pumping to the @ modes. This is not a
physical result, but it is currently unclear how much of an effect the truncation actually has on the
time evolution, and resulting steady states. The discrepancies associated with this procedure have
not been examined in the literature, and are the topic of this chapter. Finally, the errors associated
with numerically simulating the coupled SDEs (1.59) are dealt with in Appendix B.

In this section I compare truncated positive-P simulations to simulations of the master equation
(1.56) for the same system in a number state basis. This is a desirable comparison because direct
simulations of (1.56) will provide us with insight into the effect of the truncation on the accuracy
of the truncated positive-P simulations. However, it is first beneficial to note why we could justify
truncating the third order therm in the first place. This comes down to a simple scaling argument
as follows. First of all, we note that the phase space variables scale with the square root of the
number of photons, as can be seen in (1.26). We then define the scaled phase space variable & such
that

a = ay/n, (5.1)

and the same for the other three phase space variables. Substituting these into the Fokker-Planck
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equation for triplet down conversion, (1.57), we obtain

oP

1 0

1 32 ~+273 , L 32, 234y, L O [ 1Yk 4
— (n° k& p) + n8~+(n KG“PT) + 505 5@

or _ |10
ot J/n 0

1 0 n® 2k _ 3 10 1 9 A
T nop <_ 70 ) T UmaaYmed) — e (Vs
1 0 1 0 * D~ =~ R A
T LR P <eb>] P(a,a*, B, ). (5:2)
_,_1 1 ? (2n/<ad+6~)+i ’ (2nkapft)| P(a,at, B8, 87")
2 | n a2 n dat? R
11 & . 1 N Plaat 5.6
e [W ae3 (VeB) + 35 o (VinsB) | P(a, 6", 5, 57).

where we could take P(a) — P(&) due to its linear nature. The important point to note is
the overall powers of n in each term. Those corresponding to first order derivatives scale with
between n~/2 and n; the second order terms are constant with respect to n; and the third order
terms both scale with n~/2. Obviously for small numbers of photons the third order term will be
important, but it will become decreasingly important as the size of the systems increases. This
indicates that truncation is plausible in the classical limit of many photons that is used throughout
this dissertation. This claim is examined below via comparison to a Monte Carlo wave function
technique.

5.1 Monte Carlo Wave Function Techniques

It would be possible to directly simulate the time evolution of the density matrix subject to the
master equation (1.56), but this is not the approach taken here. Instead we use the Monte Carlo
wave function (MCWF) technique implemented in QuantumOptics.jl!. For an N-dimensional
Hilbert space, the MCWF approach simulates the time evolution of an N-dimensional state rather
than of an N2-dimensional density matrix. The technique was developed in the 1990s for numeri-
cally simulating dissipative systems, and can be applied to any system with a master equation in
Linblad form, such as (1.56). The theory behind the technique is discussed in [7], but the key point
is that it simulates individual trajectories, and in the stochastic average their time evolution can
be used to recover the density matrix consistent with the master equation. A brief outline of the
simulation of an individual trajectory is given below:

1. Given an initial state, time evolution is simulated according to the Schrédinger equation using
the non-Hermitian Hamiltonian

A~ Zh /\.i. A
H— EZJZ. J;, (5.3)

!See https://qojulia.org/documentation/timeevolution/mcwf . html.
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where the J; are the jump operators that represent dissipative behaviour in the Linblad form
of the master equation - in the context of triplet down conversion they are the annihilation
operator for each mode.

2. At random times? there is a “quantum jump” to a different state given by
Ji [ (#))
(W) Il ()

then time evolution proceeds as above. When the jump operator is an annihilation operator,
this is equivalent to removing a photon from the system - it is modelling the damping of each
mode.

() —

(5.4)

The trade off with this technique is that we require a stochastic average over many trajectories,
but this is usually still faster than simulating the full density matrix [7]. That being said, MCWF
simulations using the parameters that have been used throughout this dissertation would require a
Hilbert space that was prohibitively large for numeric simulations, because the expected number of
photons in my simulations has been on the order of 10,000. Instead, we have limited ourselves to
systems which have expected mode populations on the order of 100 photons. Note that the Hilbert
space required to model this needs to be larger than the maximum expected number of photons
because the actual state will be close to a coherent state, which has a Poissonian distribution in
terms of the number states. We also focus on degenerate triplet down conversion.

In practice, because it requires a large Hilbert space, the MCWEF method is still significantly
slower than the truncated positive-P method. However, its lack of truncation provides a valuable
check for the truncated positive-P results which has not been done before.

5.2 Results

For the purposes of comparison, I ran simulations of three sets of parameters, aiming to cover i)
a system that reaches a steady state, ii) a system with interesting dynamics, and iii) a system
that is located within the “transition region” (the noise terms - the second order derivatives in the
Fokker-Planck equation - are dominant around the critical pumping, so it is to be expected that the
same is true for the third order terms). The results are presented in Figures 5.1 - 5.3 respectively
for phase space simulations averaged over 20,000 trajectories, and MCWF simulations averaged
over 1,000 simulations. It should be noted that the phase space simulations took on the order of
one minute to run, while the number state simulations were on the order of one to two days. A
more detailed comparison in this respect is beyond the scope of this chapter.

We can see that on a whole the truncated positive-P technique matches the behaviour of the
MCWF simulations fairly well, but there are some small systematic discrepancies. In Figures
5.1 and 5.3 the solutions appear to gain a constant offset, while in Figure 5.2 the frequency of
the oscillations appears to be slightly altered. However, these results confirm that in general the
truncation has a minimal effect. In Figure 5.3 in particular some of the discrepancy can be explained
by noting that 1,000 trajectories is probably not enough for the simulations to converge for the
given parameters.

2There is physics behind the probability of a quantum jump at any given time, but it is not relevant here.
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There are a couple of additional points to make about the agreement between the simulations.
Firstly, as noted above, the truncated positive-P simulations will be least accurate for low mode
populations. It would be expected that the discrepancies are smaller for the parameters used
throughout this dissertation. Secondly, due to the time involved with the simulations, an exam-
ination of the convergence of the number state simulations analogous to that in Appendix B for
the phase space simulations has not been possible, but it is unlikely that they have converged after
only 1,000 trajectories. Number state simulations averaged over more trajectories would likely, but
not definitely, lead to stronger agreement with the phase space simulations.

Finally, it is worth noting that the key factor that affects the accuracy of the number state
simulations, apart from the number of trajectories averaged over, are the sizes of the Hilbert spaces
used for each mode. In order to confirm that the Hilbert spaces used in my simulations were
large enough, I ran the same simulations for larger Hilbert spaces, and confirmed that the results
did not change. For example, the Hilbert spaces used for the simulations presented in Figure 5.2
had dimensions of N, = 270 and N, = 60 for the a and b modes respectively. When increased
significantly to N, = 310 and N, = 100 the results were unchanged. For the MCWF implementation
in QuantumOptics.jl, all randomness is generated from a seed, so the comparison was made for
individual trajectories.

5.3 Summary

A comparison between truncated positive-P phase space simulations and MCWF simulations in a
number state basis was made for three systems with low photon populations. This is the first time
such a comparison has been made. The results are largely consistent, supporting the use of the
truncated positive-P method for investigating triplet down conversion.
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Figure 5.1: A comparison between the time evolution as given by the truncated positive-P SDE (1.59) and
by the Monte Carlo wave function technique. The parameters used are k = 0.005, v, = 0.05,v, = 0.5, ¢, = 2,
and ¢, = 0. The SDE was averaged over 20,000 trajectories, while the MCWF was averaged over 1000
trajectories. The Hilbert spaces had dimensions of N, = 160 and N, = 60 for the a and b modes respectively.
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Figure 5.2: A comparison between the time evolution as given by the truncated positive-P SDE (1.59) and by
the Monte Carlo wave function technique. The parameters used are xk = 0.025,7, = 0.8,7, = 1,¢;, = 11, and
€, = 0. The SDE was averaged over 5000 trajectories, while the MCWF was averaged over 1000 trajectories.
The Hilbert spaces had dimensions of N, = 270 and N, = 90 for the a and b modes respectively.
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Figure 5.3: A comparison between the time evolution as given by the truncated positive-P SDE (1.59) and by
the Monte Carlo wave function technique. The parameters used are x = 0.025,v, = 0.8,7, = 1,¢, = &8, and
€, = 0. The SDE was averaged over 20,000 trajectories, while the MCWF was averaged over 1000 trajectories.
The Hilbert spaces had dimensions of N, = 270 and N, = 90 for the a and b modes respectively.
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Chapter 6

Conclusion

In this thesis we have performed a systematic numerical investigation of intra-cavity triplet down
conversion using optical phase space methods. We have identified regimes of squeezing and entan-
glement in the accessible output fields for a pumped steady state. To do this we first obtained
a clear understanding of the stable steady states of the mode populations. These were used to
generate fluctuation spectra for the output fields, and to calculate a number of other measures
related to experimentally accessible quantum information.

We began by mapping a master equation for degenerate triplet down conversion into opti-
cal phase space using a truncated positive-P method. The time evolution and steady states of
the resulting stochastic differential equation were thoroughly analysed, including comparison to a
semi-classical approximation. This comparison identified two critical regimes in which quantum
fluctuations play a particularly important role. The first was a critical point in the time evolution
at which rapid growth in the population of the low energy mode was observed. The quantum
treatment indicated a reduced magnitude of this behaviour. The second was a critical pumping,
defined as that at which the semi-classical approximation obtained steady states corresponding to
a non-vacuum low energy mode. Far above, and below the critical pumping, the semi-classical
approximation was consistent with the quantum treatment, but it was found that quantum noise
effects can lead to shifted steady state populations about the critical pumping.

From these steady states we then systematically investigated the squeezing and entanglement of
the output fields as a function of the high energy pumping that drove the interaction. It was found
that the steady output fields were squeezed and entangled at all pump intensities above the critical
pumping. Once again, the region around the critical pumping required a quantum treatment, which
showed that squeezing of the low energy was most extreme around the critical pumping. Below
critical pumping all modes are in a minimum uncertainty state.

As a generalisation of the degenerate results presented, we briefly considered the process of
non-degenerate triplet down conversion. All four modes were found to be squeezed, and the three
down converted modes were found to be tripartite-entangled and steerable. A strong dependence
of the squeezing of the high energy mode on the steady state of the low energy mode was identified,
but deeper conclusion require a more in-depth analysis.

A comparison of the truncated positive-P method to a Monte Carlo wave function method
was made for the case of degenerate triplet down conversion. This was the first time such a
comparison has been made, and it provided valuable insight into the effect of truncation on the
results presented throughout this dissertation. Some small systematic discrepancies between the
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methods were identified, but the overall results were in strong agreement, validating the use of a
positive-P approach to triplet down conversion.

In summary, an in-depth analysis of the process of triplet down conversion has been performed
in optical phase space. Physically important quantities and regimes have been identified and
investigated, and the results validated via comparison with simulations in a number state basis. As
the positive-P model is generally a reliable description of damped quantum optical systems, our
results should offer a guide for experimental efforts to utilise triplet down conversion as a resource
for quantum information applications.
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Appendix A

Notation

«, 67 ()é+,6+
£7§Za€<t)
[9) , (V|

\.>> "m
& R

phase space variables; eigenvalues of coherent states
a random variable, subject to the properties outlined in §1.4.2
a ket and a bra representing a quantum mechanical state and its Dual vector respectively

boldface indicates a vector quantity
an over-hat indicates an operator

the time derivative of «, equivalent to Ccll—?

the complex conjugate of «

the absolute value of the complex number «

the steady state value of the variable «

the conjugate transpose (adjoint) of the operator @, discussed in §1.1

the transpose of the operator a or the matrix A

the expectation value of the operator Z, discussed in §1.1

the expectation value of the stochastic variable x, discussed in §1.4.1
the standard deviation of the operator &

the variance of x, defined in §1.4.1

the covariance between x and y, defined in §1.4.1
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Appendix B

Numerics

Even if the SDEs (1.59) (and (4.2)) modelled the process of triplet down conversion exactly, there
will still be errors associated with the results obtained from numerical simulations. Firstly, simu-
lating (1.59) only recovers the result of its corresponding FPE exactly in the limit that we average
over infinite trajectories. We need to ensure that enough trajectories have been averaged over in
order for the simulations to have converged. Secondly, there are the usual numerical issues relating
to discretisation - primarily the time step used in the simulations.

B.1 Averaging over Trajectories

I begin by considering the effect that the number of trajectories averaged over has on the simula-
tions. To begin, Figure B.1 shows the steady state value given by the average of between 1 and
30,000 trajectories for an ensemble of ten different simulations, and the variance of these values.
We see that after approximately 5,000 trajectories agreement between simulations barely improves,
which is to say that the simulations have converged. At this point the simulations differ from each
other by less than 0.05%, which is extremely good agreement. However, this does not necessarily
imply that the simulations have converged on a whole, nor is it surprising that the steady states are
in such agreement - in Section 2.1 we showed that the semi-classical ODE had steady states fairly
consistent with individual stochastic trajectories. The only source of error in the steady states is
the relatively small stochastic terms, so not many trajectories are required to average them away.
In order to quantify the convergence of the overall simulation, Figure B.2 shows the the largest
range of values at any time across the ten simulations for each “number of trajectories averaged
over”. Unsurprisingly, this does not converge as fast or as well as the steady states, but importantly
it does appear to level off around 15,000 trajectories - and in fact most of the variation is gone by
5,000 trajectories. Most importantly, there is no obvious improvement after 20,000 trajectories.

B.2 Tolerances

I will now consider the effect of the step size on the simulations. Throughout my work I used the
LambaFulerHeun algorithm', which uses an adaptive step size, so rather than being set directly,
the step size is determined at each time step by a relative and absolute error tolerance passed to

!See http://docs. juliadiffeq.org/latest/solvers/sde_solve.html#Full-List-of-Methods-1.
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Figure B.1: The convergence of the steady state values as more trajectories are averaged over. LEFT: The
value of |a| obtained from ten different simulations. RIGHT: The variance of the values of |a;| given by the
ten simulations. The parameters used are k = 0.001, v, = 274, €4 = 574, and €, = 2007,.
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Figure B.2: The largest range of values of |a| at any time across ten simulations as a function of the number
of trajectories averaged over. The parameters used are k = 0.001, v, = 27,4, €4 = 574, and €, = 2007,.

the solver?. A smaller tolerance will result in an overall smaller step size. In my simulations I used
the default absolute and relative tolerances of 1072.

In order to investigate the role of the tolerances, ten simulations were run for tolerances ranging
from 1079 to 10~*. For each simulation the absolute and relative tolerances were set to the same
value, and averaged over 20,000 trajectories. Figure B.3 shows the effect this had on the steady
states. We see that by around 107! the solution has converged. It is interesting to note that
for the larger tolerances the steady states are predicted to be smaller than the converged value.
By 107! the variance of |a| has also levelled off, indicating that decreasing the tolerance further
does not improve the solution. In terms of the overall time evolution, the tolerances were found to
have no effect, at least when averaging over 20,000 trajectories. Ultimately the steady states are
the most important however, as they are the quantity that was used to determine the key results
presented in Chapters 2 and 3.

2See http://docs. juliadiffeq.org/latest/basics/common_solver_opts.html#Stepsize-Control-1.
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Figure B.3: The convergence of the steady state values as a function of the tolerances passed to the SDE
solver LEFT: The steady state values of || predicted by ten simulations. RIGHT: The variance of steady
state values of |as| given by the ten simulations. The parameters used are k = 0.001,7, = 274, €2 = 57q,
and €, = 2007,, and 20,000 trajectories were averaged over.

B.3 Batching Trajectories

As a final note, we briefly discuss the details of the simulations. In the simulations presented
throughout this dissertation, phase space variables were averaged over 20,000 trajectories. This has
been shown to be enough to converge, but has the unfortunate downside of being too many to be
held in RAM at once on the computer running the simulations, which slows down the computation
significantly. In order to speed up calculations, we batched trajectories, which is to say we ran
multiple Monte Carlo simulations of a relatively small number of trajectories, then averaged over
these in order to obtain my final values. We tended to run 40 batches of 500 trajectories, which
was a sufficiently small number of trajectories to remain in RAM.
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Appendix C

Key Derivations

C.1 The von Neumann Master Equation

The von Neumann equation, introduced in Section 1.2.2, describes the time evolution of the density
matrix for a closed system. It appears to take the form of a Heisenberg equation of motion for an
operator, but actually differs by a factor of —1. The similarity is deceptive because the density ma-
trix is defined explicitly in terms of state kets and bras, which undergo Schrédinger time evolution.
From the definition of the density matrix, p =Y Py |[tn) (|, we see that its derivation requires
the time evolution kets and bra. State kets undergo time evolution dictated by the Schrodinger
equation. Rearranging (1.8) and taking its conjugate transpose yields the time evolution of a ket
and a bra respectively as
o) _ i Oyl _ i

ot :—%HW% and W:%W’H,

where we used the fact that the Hamiltonian is Hermitian. The time evolution of the density matrix
is then given by

NASIEES BAIC <|wn> wal)),
= 3R [ ) Gl ) 4 A
5 X A1) ] = 511

C.2 Definition of the Coherent States in terms of Number States

Defining the coherent states is motivated by considering the eigenstates of the annihilation operator
a. To calculate these, it stands to reason to use a number state basis as we know the action of a
on |n), and they form a complete orthonormal basis. Denoting a potential eigenstate of a as |«),

we have
o) = enln),

n
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where the ¢, coefficients are determined by taking the inner product between a |«) and the number
state |m):

(ml @’ e fn) = (ml
Z\/ﬁcn (mln — 1) = Zacn/ (m|n")

E \/ﬁdm,n—l = E acn’ém,n’a
n n’
Cm+1Vm+1=acy,.

This defines the coefficients recursively, i.e.

o a? a™

a
= —Cp 1= —F————Cp2=...= ——C = o) = —0p.
\/ﬁnl n(n—l)n2 \/HO o) zn:mo

In order to determine ¢y we normalise |a) to obtain

(ala) = ZZ\FW (n|m) |col? Z‘a‘ =1,

— 2 . .
where ) % n, = ¢e”, so we have |¢g| = e [2[*/2 " The overall phase is unimportant, so we can take

co = |eo|, which gives us
o) e~ lol? /227 In).

C.3 Action of Creation Operator on a Coherent State

The actions of the creation and annihilation operators on coherent kets and bras are presented in
1.3.4. As an example, I derive af|a) - as given by (1.28). Substituting in |a) of the form (1.21),
we obtain

t (e—QIQ/Qijm)) — ¢lef /QZ \/n+ In+1), let m=n+1,

e~laf?/2 Z V).

where v/m/+/(m — 1)! = m/v/m!, and the summation over m can begin from 0 since this term will

not contribute to the sum

Jaf2/e g M
ey ——
m=0 m!
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Notice that ma™ ! looks like a derivative with respect to . We can calculate -2 5o la) via the product
rule as

0 . am” o . o™ " nan !
—aa*/2 _ —aa* /2 —aa* /2
da (6 Zn Vil '”>> 2 (e Zn N '”>> " (e Zn Vil ”>> ’

which is to say

Oé*

0 a>:—%*|a>+awa> — af|a>=<2+aaa) By

da
C.4 P Function Correspondences

The operator correspondences for the positive-P function are given in Section 1.3.7. In this appendix
I derive the correspondence equivalent to (1.41) for the P function, which take on the same form,
but with a* — of. Although it may not appear obvious, it can be formally shown that the same
results are obtained for the positive-P function. We begin by applying the creation operator to the
density matrix in the form (1.34). We use (1.28) to obtain

ilp= [ a P(a,a)a o) (al.
= [ o Plasar) (Gl + 1) ) fal

Pa P(a, o) [ |a)(a] + ’><a| .
- [#araa (3 )

We can replace the last term by considering the derivative of |a)(a| with respect to «

0 9a) el _ 01}
2 flad (ol = 222 (o + oy 2% = 21 (0] ~ 0 & fal.

Rearranging, and substituting back into the integral, we obtaln
~F 2 * * a
a'p= [ d°a Ple, o) | o fa)(al + 5~ [lo) {a]] |,
= [ #a Pl ol + [ o Plasa”) 3 [o) ),
e

where the derivative of (| was calculated from the definition of |«) in terms of number states.
Applying integration by parts to the second term, and dropping the resulting boundary terms', we
obtain

atp= /d2a Pla, o) a* |a){al —/d2a 813(;"0‘) ) (al,
«

_ /d2a (a* - ai) P(a,a”) [a)(a] .

From this we observe the operator correspondence

alp <a* - ;) P(a,a™).

Q

!This is not possible in every case, which does limit the situations in which the P representation is useful, although
in practice the boundary terms almost always vanish.
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Appendix D

Additional Results

2.0

151

las|
e
)

0.5

0.0

a =0.3

ap = 0.6

a =0.9

Effect of the Initial State on the Steady States

a=1.2

1.5

1.0

0.5 1

2.0

1.5

1.0

0.5 1

0.5 1

0.0

0.0

0.0

X simulation

Eb

—— steady state solver (stable)

Eb

——- steady state solver (unstable)

Figure D.1: The steady state values of |a| as a function of €, for four different initial states, as given by
integration of (2.2). The parameters used are k = 0.001,7, = 1, and v, = 2, and the ap = 1.2 plot is a
replication of Figure 2.4(b).
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Figure D.2: The steady state values of |«| as a function of ¢, for four different initial states, as given by

stochastic integration of (1.59) until v,¢ = 150. The parameters used are x = 0.001,7, = 1, and v, = 2,
20,000 trajectories are averaged over, and the ag=60 solutions are a replication of those in Figure 2.6.
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D.2 Steady States of 3| as a Function of ¢,
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Figure D.3: The steady states of |3| corresponding to the numerical results presented in Figure 2.4(b)
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Figure D.4: The steady states of |3] corresponding to the numerical results presented in Figure 2.6
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D.3 Time Evolution of |5| as a Function of ¢,
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Figure D.6: The time evolution of |§| corresponding to the numerical results presented in Figure 2.8.
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