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Abstract
Intrinsic contributions to the anomalous Hall conductivity in multiband chiral

superconductors

by Mathew DENYS

The anomalous Hall conductivity is a material property that can quantify time-reversal symmetry
breaking in bulk materials. It is closely related to the polar Kerr effect, which is used as an
experimental probe of such states, including in unconventional superconductors such as Sr2RuO4

and UPt3. In such materials there is controversy as to the origin of the effect: is it due to an extrinsic
mechanism such as scattering, or is the underlying mechanism intrinsic to the clean superconductor.
Previous work in single-band models has indicated that an intrinsic contribution to the anomalous
Hall conductivity is vanishing, and much of the theoretical literature has focussed on extrinsic
contributions. However, recent work has shown that an intrinsic contribution is possible in multi-
band superconductors. This thesis builds on previous work to develop an understanding as
to the general conditions under which a two-band Hamiltonian will exhibit an anomalous Hall
conductivity. Our results can be applied to explain experiments in order to gain insight into the
pairing states of various unconventional superconductors. Substantial attention is paid towards
strontium ruthenate as an illustrative model.
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Chapter 1

Introduction

1.1 A brief overview of superconductivity

The phenomenon of superconductivity was first observed in 1911 by Heike Kamerlingh Onnes
when he found that the electrical resistance of a sample of mercury abruptly dropped to zero when
cooled below 4.2 K [1]. In the following decades the same behaviour was observed in a variety
of other materials [2], and in 1933 Meissner and Ochsenfeld [3] discovered that superconducting
samples of tin and lead expel magnetic fields. These two phenomena, vanishing electrical resistance
and the expulsion of magnetic fields, are the defining characteristics of a superconducting state.

The microscopic origin of superconductivity remained a mystery for a long time, although
a number of early phenomenological theories were put forward. The most successful of these
were those constructed by Ginzburg and Landau [4] regarding the condensation energy of the
superconducting state transition, and by London and London [5] regarding the expulsion of
magnetic fields. The Ginzburg–Landau theory is still used as the basis of phenomenological
descriptions of superconductivity to this day, in cases when a microscopic theory is impractical.
In 1956 Leon Cooper published a seminal paper outlining a mechanism by which electrons in a
crystal lattice could bind together into energetically favoured pairs [6]. This laid the road to a
comprehensive microscopic theory known as BCS theory [7, 8], named after its creators, Bardeen,
Cooper, and Schrieffer.

1.1.1 BCS theory

BCS theory applies to systems with a Fermi sea of weakly-interacting electrons in their normal
state. Cooper showed that interactions between electrons and phononic excitations of the lattice
could result in an attractive electron–electron interaction, as long as both electrons are within some
particular energy of the Fermi surface [6]. While an attractive interaction in three dimensions
does not lead to a bound state in general [9], the presence of a Fermi sea can be shown to imply
that, no matter how small the attractive interaction, any electrons outside the occupied Fermi
sea will pair together into stable bound states. These are referred to as Cooper pairs, and under
the electron–phonon mechanism of BCS theory the most energetically favoured pairs are formed
from electrons of opposite momentum and spin. Cooper pairs are bosons, so the ground state of a
superconductor is one in which each pair is in the same lowest-energy state. This phenomenon is
analogous to Bose–Einstein condensation, and results in a highly correlated system [9].

The formation of Cooper pairs destabilises the Fermi surface and results in an energy gap
separating the paired states from those corresponding to free electrons, such that a finite amount
of energy is required to break apart a Cooper pair. This is exemplified in Figure 1.1 A, where a
single electronic energy band is present in the normal state because spin states are degenerate in
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k
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(A) Single band
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no interband gap

(B) Intraband pairing

k

E(k)− µ

(C) Intra- and interband pairing

FIGURE 1.1: The normal state and superconducting state band structures of three one-dimensional toy models.
Solid [dashed] red and blue lines indicate the normal state dispersion of electrons [holes]. Solid grey lines

indicate quasiparticle dispersions in the superconducting state.

the absence of a magnetic field. In the superconducting state the excitations of the system are no
longer electrons themselves, but rather quasiparticles composed of a superposition of electrons and
their antiparticles, holes [9]. The superconducting dispersion arises from the hybridisation of the
normal state electron and hole dispersions.

Due to the highly correlated nature of the BCS ground state, breaking one pair disturbs all other
Cooper pairs, and therefore requires a significantly greater amount of energy than the binding
energy of a single Cooper pair. For this reason it is the opening of the band gap that stabilises
the superconducting state. In the presence of an electric field Cooper pairs may pick up a finite
centre-of-mass momentum. They will no longer occupy their true ground state, but the system is
still highly coherent. As the motion of one electron is correlated to the motion of all other paired
electrons, it cannot easily be scattered into a different momentum state without a significant energy
cost. This explains why electrical resistance drops to zero in the superconducting state.

1.1.2 Unconventional superconductivity

For many of the earliest discovered superconducting materials BCS theory provided accurate
predictions, and seemed to be shaping up as a universally applicable theory. Significant deviations
were first observed in the heavy fermion compounds [10, 11], which exhibited superconductivity
despite localised magnetic moments that BCS theory predicted to be detrimental. In the 1980s
superconductivity was observed in the “cuprates”[12, 13], a series of compounds sharing a copper-
oxide structure. Some cuprates have critical temperatures on the order of 100 K, much larger
than was thought possible at the time, and are hence referred to as “high-Tc” superconductors.
Collectively, superconducting materials that do not obey BCS theory are said to be unconventional
[14]. Other classes of unconventional superconductors include the heavy fermion superconductors
[15, 16], the iron pnictides [17, 18], and the organic superconductors [19].

The microscopic origin of unconventional superconductivity remains an unsolved problem,
but there has been success in explaining their behaviour using a classification scheme based on
the different ways that electrons can bind into Cooper pairs. As electrons are fermions, one of
the fundamental properties of Cooper pairs is that they must be antisymmetric under exchange of
their constituent electrons. In conventional BCS theory the phonon mediated interaction leads to
pairing states with an s-wave momentum dependence, which is symmetric under particle exchange
[9]. For this reason, the two electrons must be paired in the spin-singlet configuration |↑↓〉 − |↓↑〉,
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such that the overall momentum-spin state is antisymmetric under particle exchange. Unconven-
tional superconductors tend to arises from alternative pairing mechanisms, and as a result may
permit the formation of Cooper pairs with different momentum dependences. Higher angular
momentum pairing states (p-, d-, f-wave etc.) may be favoured so as to minimise the close-range
Coulomb repulsion between electrons, and have been proposed to exist in various unconventional
superconductors. For example, the cuprates are believed to be d-wave [20], and the heavy fermion
superconductor UPt3 is thought to have an f-wave state [21, 22].

If momentum and spin are the only degrees of freedom required to describe the Cooper pairs,
fermionic antisymmetry requires that even-momentum states (s-, d-wave etc.) must be spin-
singlet, while odd-momentum states (p-, f-wave etc.) must be spin-triplet (corresponding to the
|↑↑〉, |↑↓〉+ |↓↑〉, and |↓↓〉 states [23]). However, the electrons in some materials may be further
differentiated by a third degree of freedom, such as the atomic orbital from which they originate
[24–26], or a sublattice, layer, or valley degree of freedom [27–30]. For simplicity, I will always
refer to this degree of freedom as an orbital one. In these systems the fermionic antisymmetry of
the pairing state may be associated with the orbital degree of freedom, allowing for exotic pairing
states. For example, a spin-triplet, s-wave state is allowed, as long as the orbital degree of freedom
is antisymmetric with respect to particle exchange.

Unlike spin, orbital degrees of freedom tend to have non-degenerate states, leading to multiple
energy bands. Further, the spin and orbital degrees of freedom are not typically good quantum
numbers, which is to say that energy band eigenstates are a mixture of multiple orbital-spin states.
The resulting Cooper pairs can be classified as being “intraband” or “interband”, depending
on which bands the electrons involved originate from. Intraband pairing is like conventional
superconductivity in the sense that it opens band gaps across the Fermi surface, as shown for
a two-band toy model in Figure 1.1 B. Interband pairing opens band gaps away from the Fermi
surface, as shown in Figure 1.1 C. While the gap opened by intraband pairing is vital for stabilising
the superconducting state, interband pairing is generally detrimental [31, 32].

1.2 Time-reversal symmetry

Symmetries play a major role in solid state physics, and in understanding unconventional supercon-
ductors in particular because a precise classification of the Cooper pairs is based on the symmetries
that are broken by the superconducting state. These are typically crystal symmetries such as spatial
inversion or rotation about a given axis, but states which break time-reversal symmetry are also
possible. It could be argued that a more appropriate name here would be “motion-reversal”, but at
its core time-reversal is defined by its action of t→ −t. Time-reversal is antiunitary in nature, so is
implemented in quantum theory by the operator Θ = UTK, where UT is a unitary operator, and
K is the complex conjugation operator [33]. If time is reversed particles will move in the opposite
direction, and will hence have opposite momentum. Similarly, spin states are reversed, so we have

Θ |k〉 = |−k〉 , Θ |↑〉 = |↓〉 , Θ |↓〉 = − |↑〉 , (1.1)

where the factor of −1 in the last equation is due to the general result that Θ2 = −1 for systems
of half-integer spin [33] (a general system must have Θ2 = ±1 as two successive applications of
time-reversal will return us to the same physical state).
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1.2.1 Time-reversal symmetry breaking and the polar Kerr effect

An operator O is said to be symmetric under time-reversal if ΘOΘ−1 = O, which is equivalent
to saying that Θ and O commute. A physical system is symmetric under time-reversal if its
Hamiltonian commutes with Θ. Equivalently, it breaks time-reversal symmetry if

ΘHΘ−1 6= H. (1.2)

This phenomenon is usually associated with magnetism, due to the action of time-reversal on spin
states as given in (1.1). A magnetised system has a preferred spin direction, which is reversed
under time-reversal.

Conventional (s-wave, spin-singlet) superconductors are inherently time-reversal symmetric
because s-wave functions are even under the reversal of momentum, and (1.1) shows that the
singlet state |↑, ↓〉 − |↓, ↑〉 is symmetric under time-reversal. Unconventional superconductors, on
the other hand, can form pairing states that break time-reversal symmetry [34]. Unfortunately, the
experimental detection of time-reversal symmetry breaking (TRSB) in superconducting materials is
complicated by the expulsion of magnetic fields mentioned in Section 1.1. Any intrinsic magnetic
moment associated with the pairing state is screened such that the magnetic field is vanishing
throughout the sample [35]. Although this screening is reduced at surfaces and defects, the
measurable magnetic moment is weak, so we must resort to indirect probes [35, 36]. Muon spin
relaxation has been developed as an experimental probe of the local magnetic environment of a
material [37], and has detected TRSB in various superconductors [38, 39]. However, it is not always
clear if the resulting signal is a bulk property or a localised effect about a defect. For this reason, it
is desirable to have multiple complimentary experimental probes sensitive to TRSB. The detection
of any magneto-optical effect, i.e. one arising from the interactions between photons and the spins
of electrons, is an unambiguous indicator of TRSB in bulk materials [40]. The polar Kerr effect1 is one
such magneto-optical effect in which linearly-polarised, normally-incident light reflected from a
TRSB material is elliptically polarised, and rotated by the Kerr angle [40, 41]

θK = − Im
{

ÑL − ÑR

ÑLÑR − 1

}
, (1.3)

where ÑL and ÑR are the complex indices of refraction of left- and right-circularly polarised light
respectively. We see that a circularly birefringent material, i.e. one with ÑL 6= ÑR, is required
to exhibit a non-zero Kerr angle, although it should be noted that (1.3) is in fact only valid if the
difference between ÑL and ÑR is small. This circular birefringence is a result of TRSB [40]. In the
context of superconductors we can use physically motivated approximations in the optical regime
to write [41, 42]

θK =
4π

ω
Im
{

σH

ñ(ñ2 − 1)

}
, (1.4)

where ω is the frequency of the incident light, σH is the antisymmetric part of the conductivity
tensor (referred to as the Hall conductivity, and discussed in detail below), and ñ is the complex
refractive index of the material in the absence of any magneto-optical effect (i.e. the part of that
does not contribute to the birefringence). The frequency dependence of the refractive index can lead
to significant modulation of the Kerr angle, but (1.4) shows that the polar Kerr effect is observed if
and only if the Hall conductivity is non-zero.

1More specifically this should be referred to as the magneto-optic polar Kerr effect so as not to be confused with the
electro-optic Kerr effect, a non-linear optical effect in which an electric field affects the refractive index of a material.
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1.2.2 Anomalous Hall conductivity

The current, J, in a material is related to the electric field, E, via Ji = σijEj, where σ is the con-
ductivity tensor, and the Einstein summation convention applies to all repeated indices in this
thesis. The off-diagonal elements of the conductivity can be written in terms of a symmetric and an
antisymmetric tensor. The antisymmetric part is referred to as the Hall conductivity. In the context of
an electromagnetic field propagating along the z axis, the electric field is restricted to the xy-plane,
and we write

σH =
σxy − σyx

2
. (1.5)

It is common to see σxy referred to as the Hall conductivity in the literature, although this is only
consistent with (1.5) in the case that the conductivity tensor has no symmetric part. There are
various underlying mechanisms that could lead to σxy 6= σyx, all of which require TRSB. For
example, an applied magnetic field in the z direction can break time-reversal symmetry by lifting
the degeneracy between spin-up and spin-down states. However, superconductors expel magnetic
fields, so we are interested in the anomalous Hall conductivity, i.e. that which arises in the absence
of an applied magnetic field.

In general, the Hall conductivity is dependent on both the frequency of the incident light and its
wavevector, q. The well known Hall effect [43] arises from the Hall conductivity in the q→ 0, ω → 0
limit. For normally incident light the wavevector within the xy-plane is essentially zero, so we
take the q→ 0 limit in all calculations in this thesis. This is not entirely accurate as any finite-size
incident beam will have an in-plane wavevector, but corrections due to this have been found to
be negligible [42, 44]. Throughout this thesis we will also work in the “linear response regime”,
which is discussed in more detail in Chapter 5. This is equivalent to only considering single-particle
contributions to the Hall conductivity. Higher order “vertex corrections” can contribute, but the
energy scales involved are irrelevant to experimental endeavours [42].

While the breaking of time-reversal symmetry is a necessary condition for σH 6= 0, it is not
sufficient. For example, the (q = 0) external electric field only couples to the centre-of-mass
momentum of Cooper pairs [26, 42], so if the TRSB is located in the relative momentum of the paired
electrons there must be some mechanism by which this is coupled to the centre-of-mass coordinate.
In a clean single-band superconductor these two coordinates are independent due to Galilean
invariance [42]. In order to communicate TRSB in the pairing to the centre-of-mass coordinate,
breaking of translation symmetry is required. This can be achieved by introducing impurities to
the crystal lattice, and the resulting scattering can lead to an anomalous Hall conductivity via well
understood mechanisms [34, 45–48]. Alternatively, in multiband superconductors, the relative
and centre-of-mass coordinates are coupled [26], so it is feasible that a mechanism intrinsic to the
clean superconductor can lead to an anomalous Hall conductivity [22, 26, 49–52]. In contrast to
the impurity scattering mechanism, intrinsic contributions to the Hall conductivity are relatively
poorly understood. It was recently proposed that an intrinsic contribution was dependent on the
possibility of constructing a “time-reversal-odd bilinear” from the pairing potential, which was
shown to neatly explain the Hall conductivity in a simple model of the honeycomb lattice [27].
The aim of this thesis is to generalise this result, so as to provide a better understanding as to the
necessary conditions for an anomalous Hall conductivity in an arbitrary system. I take this general
approach with the understanding that any specific results will depend on the details of a given
system, such as the orbitals involved in the pairing. This inherently comes with many options, so I
choose to also focus on a specific system, strontium ruthenate.
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(A) 3D Fermi surface (modelled) (B) 2D cross-section (experimental)

FIGURE 1.2: The Fermi surface of strontium ruthenate consists of three bands, with only minor dispersion in
the out-of-plane axis. (A) has out-of-plane dispersion exaggerated fifteen-fold. Reproduced from [35] and [55].

1.3 Strontium ruthenate2

Strontium ruthenate, Sr2RuO4, is a crystalline solid forming a tetragonal lattice belonging to the
D4h point symmetry group. It forms the same layered “perovskite” structure found in the undoped
form of La2−xBaxCuO4, a high-Tc cuprate, which originally inspired investigation of strontium
ruthenate as a superconductor. The normal state of strontium ruthenate behaves like a strongly
two-dimensional Fermi liquid below 50 K [35, 53]; conductivity within the RuO2 layers is of three
orders of magnitude greater than the out-of-plane conductivity [53]. Three energy bands cross
the Fermi energy, all of which derive from the Ru 4d orbitals. The “γ” band arises primarily from
dxy orbitals, while the “α” and “β” bands arise from hybridisation of dxz and dyz. Due to the
highly two-dimensional nature of the normal state, these bands have very little dispersion in the
out-of-plane axis, and form three nearly-cylindrical sheets [35, 54–56], as shown in Figure 1.2.

The superconducting transition in clean samples of strontium ruthenate occurs around 1.5 K
[57], as shown in Figure 1.3. The exact critical temperature is strongly sensitive to the presence of
impurities [58, 59], which is a strong indication that the superconductivity is unconventional [60].
The mechanism underlying Cooper pairing is thought to involve magnetic fluctuations, although
phonon interactions may play a role [35, 61–63]. The superconducting state exhibits the same two-
dimensional behaviour as the normal state, in the sense that the supercurrent is largely restricted
to the RuO2 plane. Ultrasonic probes of the strain tensor [64, 65] and tunnelling experiments
[66] indicate that the superconducting state has two components. Multi-component states lend
themselves to chiral pairing states, in which the relative phase between the two components winds
as k is moved about a closed path across the Fermi surface. Chiral pairing states are TRSB, and
indeed evidence from both muon spin relaxation [38] and polar Kerr experiments [40, 57] indicate
that the superconducting state in strontium ruthenate breaks time-reversal. The TRSB coincides
with the superconducting transition, as shown in Figure 1.3, and is observed in ultra-clean samples,
indicating that it is likely to be intrinsic to the superconducting state, rather than the material or
impurities respectively. This experimental evidence that strontium ruthenate exhibits an intrinsic
anomalous Hall conductivity is backed up by theoretical work [26, 49, 50] and is the reason
strontium ruthenate was chosen as an illustrative model for this thesis.

2For more discussions regarding strontium ruthenate, the interested reader is referred to the following highly informative
review articles: “The superconductivty of Sr2RuO4 and the physics of spin-triplet pairing” by Mackenzie and Maeno [35],
and “Chiral superconductors” by Kallin and Berlinsky [42].
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FIGURE 1.3: The conductivity (solid line) and Kerr angle (dashed line) of strontium ruthenate. We see that a
non-zero Hall conductivity coincides with the superconducting transition. Reproduced from [57].

1.3.1 An ill-fated model

When I began work on this project the consensus in the literature was that the pairing in strontium
ruthenate was likely to be a spin-triplet chiral p-wave state on the α and β bands [35, 67]. Specifically,
it has been proposed that strontium ruthenate exhibits a “kx ± iky” pairing state, where kx and ky

refer to the two p-wave components, and the chirality arises from the relative phase between these.
This relative phase leads to a phase winding of ±2π about the Fermi surface, and breaks time-
reversal symmetry in the relative coordinate. In Chapter 3 I construct a model p-wave Hamiltonian
using the Ru dxz and dyz orbitals. I restrict this model to two spatial dimensions, to reflect the
highly two-dimensional nature of the pairing in strontium ruthenate. This is a simplified model as,
for example, it completely neglects the dxy orbital, but the hope was that it would be sophisticated
enough to capture the important and relevant behaviour.

One of the core pieces of evidence for this pairing state was measurements of the spin suscepti-
bility of the superconducting state, which indicated spin-triplet pairing [68–70]. However, recent
work revisiting these measurements [71, 72] has cast serious doubt on the proposal of p-wave
pairing in strontium ruthenate. Apart from having a massive impact in the community, this is
unfortunate for us as it implies that our model is not physically justified. However, as strontium
ruthenate was only chosen as an illustrative model, the core results of this thesis should apply
broadly to more general systems anyway.

1.4 Outline

We begin in the next chapter with a general discussion of the mean-field theory of superconductivity.
This includes a formal definition of the pairing potential, which describes the pairing state, and
is directly related to the superconducting band gap. I take Section 2.2 to understand how the
Hamiltonian transforms under point symmetry operations and time-reversal within the Bogoliubov
de Gennes formalism. Chapter 3 focusses on constructing our model of strontium ruthenate, and
Chapter 4 examines the stability of the various resulting pairing terms.

In Chapter 5 I derive some general results pertaining to the anomalous Hall conductivity. In
particular, I derive a rather general formula in terms of bilinear products of the pairing potential.
This applies within the high-frequency, small-gap limit, although I discuss its applicability away
from this case. Calculations of the Hall conductivity within our model of strontium ruthenate are
performed in Chapter 6, including application of the results of Chapter 5.
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Chapter 2

Mean-field theory of superconductivity

In this chapter we begin our investigation by constructing a general superconducting Hamiltonian.
Nothing in this chapter is particularly specific to strontium ruthenate. Once we have constructed
the Hamiltonian I will dedicate some time to understanding its behaviour under various symmetry
operations. These results are well known, and will be used in the next chapter in order to classify
the terms that appear in our model of strontium ruthenate.

2.1 The superconducting Hamiltonian

We begin by writing the general HamiltonianH = H0 +Hint, where [23, 73]

H0 = ∑
k

H0,k,α1α2 â†
kα1

âkα2 , (2.1)

Hint =
1
2

1
N ∑

k,k′
Vk,k′,α1α2,α3α4

â†
−kα1

â†
kα2

âk′α3
â−k′α4

, (2.2)

â†
i and âj are electronic creation and annihilation operators, N is the number of lattice points, the

momentum summation covers the first Brillouin zone, and the Einstein summation convention
applies to the α indices, which encapsulate the spin and any additional degrees of freedom. H0 is a
single-particle “normal state” Hamiltonian, which can be derived from a tight-binding model in
real-space. On the other hand, the interaction Hamiltonian is a two-particle operator. It describes
the scattering of two opposite-momentum electrons (a Cooper pair) via the interaction potential,
V, the details of which depend on the specific pairing mechanism. The factor of one half at the
front ofHint is to avoid double counting due to the indistinguishably of electrons, so the 1

2 ∑k in
(2.2) should be interpreted as summing over half the Brillouin zone, rather than multiplying each
eigenenergy by half.

The BCS Hamiltonian can be obtained as a limiting case of H by removing the additional
degrees of freedom such that αi encapsulate only spin, requiring the the spin indices in (2.1)
to be the same, and taking α1, α4 =↑ and α2, α3 =↓ in (2.2). Additionally, BCS theory assumes
the interaction potential is momentum-independent within a fixed energy of the Fermi surface
(determined by the Debye frequency, a property of the crystal lattice), and vanishing outside
this cutoff. In unconventional superconductivity there is much more freedom in the form of the
interaction potential. In particular, the pairing mechanism does not necessarily have an energy
cutoff, so we allow V to be non-zero across the entire Brillouin zone. However, there are still some
physical results that place restrictions on its form. First of all, requiringH be Hermitian implies that

Vk,k′,α1α2,α3α4
= V∗k′,k,α4α3,α2α1

, (2.3)
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which can be seen by taking the conjugate transpose of (2.2), then exchanging α1 ↔ α4, α2 ↔ α3, and
k↔ k′. Additionally, the creation and annihilation operators obey the fermionic anticommutation
relations {âi, âj} = {â†

i , â†
j } = 0. These imply that

Vk,k′,α1α2,α3α4
= −V−k,k′,α2α1,α3α4

= −Vk,−k′,α1α2,α4α3
, (2.4)

which is seen from (2.2) by exchanging {−k, α1} ↔ {k, α2} and {−k′, α3} ↔ {k′, α4} respectively.

2.1.1 The mean-field approximation

As it stands, this Hamiltonian is difficult to solve, in the sense of calculating eigenstates and
eigenvalues. For this reason the standard approach is to perform a mean-field decoupling of the
interaction term, which is achieved by writing

â†
−kα1

â†
kα2

= 〈â†
−kα1

â†
kα2
〉+ δ̂, (2.5)

âk′α3
â−k′α4

= 〈âk′α3
â−k′α4

〉+ ε̂, (2.6)

where 〈·〉 denotes a thermal average. The expectation values in (2.5) and (2.6) are called anomalous
averages because they would be vanishing when taken with respect to a state with a definite
number of electrons. As a highly coherent system, the superconducting state can be written as the
superposition of states with different numbers of Cooper pairs, so we can expect the anomalous
averages to be non-vanishing. The “fluctuation operators”, δ̂ and ε̂, describe how the operator
products on the LHS of (2.5) and (2.6) differ from their corresponding anomalous averages. Together,
(2.5) and (2.6) can be used to write the operator product in (2.2) as

â†
−kα1

â†
kα2

âk′α3
â−k′α4

= 〈â†
−kα1

â†
kα2
〉〈âk′α3

â−k′α4
〉+ 〈âk′α3

â−k′α4
〉δ̂ + 〈â†

−kα1
â†

kα2
〉ε̂ + δ̂ ε̂

≈ 〈â†
−kα1

â†
kα2
〉〈âk′α3

â−k′α4
〉+ 〈âk′α3

â−k′α4
〉δ̂ + 〈â†

−kα1
â†

kα2
〉ε̂,

where we have used the mean-field approximation by assuming that the fluctuations about the mean-
field are small, and hence the δ̂ ε̂ product can be safely ignored. While the mean-field approximation
often over-estimates the critical temperature and other details of the transition, it tends to describe
the electronic states in the superconducting phase well. We do not know how to deal with the
fluctuation operators, but we can invert (2.5) and (2.6) to obtain δ̂ = â†

−kα1
â†

kα2
− 〈â†

−kα1
â†

kα2
〉, and

similarly for ε̂, which gives

â†
−kα1

â†
kα2

âk′α3
â−k′α4

= 〈â†
−kα1

â†
kα2
〉 âk′α3

â−k′α4
+ 〈âk′α3

â−k′α4
〉 â†
−kα1

â†
kα2
− 〈â†

−kα1
â†

kα2
〉〈âk′α3

â−k′α4
〉.

Substituting this expression into (2.2), we define the mean-field interaction Hamiltonian as

HMF
int =

1
2

1
N ∑

k,k′
Vk,k′,α1α2,α3α4

(
〈â†
−kα1

â†
kα2
〉 âk′α3

â−k′α4

+ 〈âk′α3
â−k′α4

〉 â†
−kα1

â†
kα2
− 〈â†

−kα1
â†

kα2
〉 〈âk′α3

â−k′α4
〉
)

. (2.7)

The pairing potential: One of the core features of the mean-field theory of superconductivity is
the pairing potential, which is essentially the expectation value of the annihilation of a Cooper pair,
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and is defined component-wise as [23]

∆k,ij = −
1
N ∑

k′
Vk,k′,ji,α3α4

〈âk′α3
â−k′α4

〉. (2.8)

The pairing potential can have an overall phase, but this can never be experimentally observed, so
we have freedom over the overall phase of ∆k when describing measurable phenomena such as the
Hall conductivity. Additionally, in order to satisfy the fermionic exchange antisymmetry, (2.4), the
pairing potential must satisfy

∆k,ij = −∆−k,ji. (2.9)

2.1.2 The Bogoliubov de Gennes Hamiltonian

If we take the complex conjugate of (2.8), apply (2.3), and relabel indices, we obtain

∆∗k,ij = −
1
N ∑

k′
Vk′,k,α1α2,ij〈â†

−k′α1
â†

k′α2
〉. (2.10)

Substituting (2.8) and (2.10) into the mean-field interaction Hamiltonian (2.7), making use of (2.9),
taking k→ −k in the first two terms, and relabelling indices to be consistent, we find

HMF
int =

1
2 ∑

k

(
∆∗k,α2α1

â−kα1 âkα2 + ∆k,α1α2 â†
kα1

â†
−kα2

+ ∆k,α2α1〈â†
−kα1

â†
kα2
〉
)

. (2.11)

We can also play some tricks on the form of the normal state Hamiltonian. We begin by using the
anticommutation property {â†

i , âj} = δij to write

H0 =
1
2 ∑

k
H0,k,α1α2

(
â†

kα1
âkα2 + δα1α2 − âkα2 â†

kα1

)
, (2.12)

where 1
2 ∑k is to be interpreted as a sum over half the first Brillouin zone, just as inHint. Then, by

taking k→ −k in the last term and applying fermionic anticommutation, we obtain

H0 =
1
2 ∑

k

(
H0,k,α1α2 â†

kα1
âkα2 − H0,−k,α1α2 â−kα2 â†

−kα1
+ H0,kα1α1

)
. (2.13)

At this point, keeping track of the indices will be getting under any sane reader’s skin, so it is
the perfect time to introduce some convenient notation. In order to do this, note that the last
term in each of (2.11) and (2.13) corresponds to a constant energy offset, so do not contribute to
the dynamics of the system. It is conventional to neglect them, and to redefine the mean-field
Hamiltonian as

HMF =
1
2 ∑

k

(
H0,k,α1α2 â†

kα1
âkα2 − H0,−k,α2α1 â−kα1 â†

−kα2
+ ∆∗k,α2α1

â−kα1 âkα2 + ∆k,α1α2 â†
kα1

â†
−kα2

)
.

(2.14)
It is rather straightforward to verify that (2.14) can be written as

HMF =
1
2 ∑

k
Ψ†

kHkΨk, (2.15)

where

Hk =

(
H0,k ∆k

∆†
k −HT

0,−k

)
(2.16)



12 Chapter 2. Mean-field theory of superconductivity

is the Bogoliubov de Gennes (BdG) Hamiltonian, and

Ψk =
(

âkα1 . . . âkαn â†
−kα1

. . . â†
−kαn

)T
(2.17)

is the Nambu spinor. Physically, the first n terms in Ψk correspond to the annihilation of electrons,
while the last n correspond to the annihilation of holes. The block diagonal elements of Hk describe
single-electron and single-hole dynamics respectively.

If desired, we could diagonalise Hk in order to solve for its eigenstates and eigenvalues. I
will not go to the trouble of doing this analytically here, although it is done numerically for some
specific models in later chapters. Instead, to exemplify some core results, I will briefly limit the
discussion to BCS theory, in which case we have [9]

HBCS
k =

(
â†

k↑ â−k↓
)(ξk ∆

∆∗ −ξk

)(
âk↑

â†
−k↓

)
, (2.18)

where ξk = εk − µ, εk is the normal state dispersion, µ is the chemical potential, and ∆ is a
momentum-independent pairing potential. This can be diagonalised to give

HBCS
k =

(
γ̂†

k↑ γ̂−k↓
)(Ek 0

0 −Ek

)(
γ̂k↑

γ̂†
−k↓

)
, (2.19)

where γ̂†
i and γ̂j correspond to the creation and annihilation of particle-hole quasiparticles with

energies determined by

Ek =
√

ξ2
k + |∆|

2. (2.20)

We see that, no matter the value of ξk, there will always be a band gap of 2|∆| about E = µ, as was
shown in Figure 1.1 A. Note that the phase of the pairing potential does not enter this expression.
In this context the pairing potential is usually referred to as the “gap function”, or just “the gap”. I
will use these terms somewhat interchangeably throughout this thesis. Further, (2.19) indicates that
the many-particle HamiltonianH has been reduced to a single-particle Hamiltonian, which was
achieved by the mean-field approximation.

Both of these results can be generalised away from BCS theory and applied to (2.15). From this
point on we deal exclusively with the single-particle problem by working with H0 and ∆ rather
thanHMF. It is important to note that H0 and ∆ are not operators in Fock space asH is, but rather
matrices of (momentum-dependent) c-numbers; (2.15) is just a convenient shorthand for (2.14), and
the matrix notation used here should not be mistaken as representing many-particle operators.

2.2 Point groups and irreducible representations

At this point I will take a lengthy aside to discuss point symmetries. The concepts introduced
here will be used extensively in Chapter 3 in particular, as a means of classifying terms in the
BdG Hamiltonian. A symmetry operation is any operation that leaves a given object or system un-
changed. We restrict ourselves to spatial symmetries: those which affect the position or orientation
of a system in space. Further, we restrict ourselves to point symmetry operations, which leave at least
one coordinate fixed. These include rotations, reflections, inversion, and rotoinversions. All point
symmetry operations can be implemented in quantum theory by unitary operators.

A point group is a mathematical group (satisfying the axioms of Closure, Associativity, Identity,
and Inverse), the elements of which are point symmetry operations. In crystallography the set



2.2. Point groups and irreducible representations 13

of relevant point groups is restricted by the condition that they leave an entire periodic lattice
invariant. There are a theoretically infinite number of point groups in three dimensions, but only 32
such crystallographic point groups [74]. To take a concrete example, which will be used extensively
in this thesis due to its application to strontium ruthenate, consider the D4h point group which
contains the following set of symmetry operations:

{E, 2C4, C2, C ′2, 2C ′′2 , I , 2S4, σh, 2σv, 2σd}, (2.21)

which can be combined via the operation of composition. E is the identity, 2C4 are clockwise and
counter-clockwise π

2 rotations about the z axis, C2 is a π rotation about the z axis, 2C ′2 are π rotations
about the x and y axes, 2C ′′2 are π rotations about the x = y and x = −y axes, I is inversion, 2S4

are rotoinversions constructed from the 2C4 rotations, σh is reflection in the z = 0 plane, 2σv are
reflections in the x = 0 and y = 0 planes, and 2σd are reflections in the x = y and x = −y planes.

Each symmetry in D4h can be constructed via the composition of three generating symmetries.
The canonical choices are C4, C ′2, and I (it does not matter which of the C4 and C ′2 operations are
chosen; we take C4 to be counter-clockwise, and C ′2 to be about the x axis), although there are other
possibilities such as {S4, I , σv}. We say that a crystal lattice “belongs to D4h” if it is invariant under
each of the symmetry operations listed in (2.21), although it is sufficient to show that its unit cell is
invariant under just the generating symmetries. This is the case for strontium ruthenate [35].

Given a group G, we say that the set of functions (or matrices, or whatever object you want to
deal with) {ψi} forms a basis of an irreducible representation (irrep) of G if the application of any
g ∈ G to ψi, denoted g : ψi, can be written as a linear combination of the elements of {ψi} [23]. For
example, the Cartesian functions {x, y} form the basis of an irreducible representation of D4h, since
the generating symmetries of D4h act on these spatial coordinates as

C4 : x = y, C4 : y = −x,

C ′2 : x = x, C ′2 : y = −y,

I : x = −x, I : y = −y.

In the {x, y} basis we can represent these symmetry operations as unitary matrices. For example,

C4
.
=

(
0 1
−1 0

)
, C ′2

.
=

(
1 0
0 −1

)
, I .

=

(
−1 0
0 −1

)
.

The character of this irrep under each of these generating symmetries is defined as the trace of the
respective matrix, i.e.

νC4 = Tr

{(
0 1
−1 0

)}
= 0, νC ′2 = Tr

{(
1 0
0 −1

)}
= 0, νI = Tr

{(
−1 0
0 −1

)}
= −2.

These characters uniquely determine the irreducible representation to which {x, y} form a basis
of. If we instead used the basis {x + y, x− y} for example, we would still find νC4 = 0, νC ′2 = 0,
and νI = −2, and any other set of functions with the same set of characters belongs to the same
irrep. We label this irrep in particular as Eu. Table 2.1 lists all the irreducible representations of
D4h, along with their character under each symmetry operation in D4h. This is referred to as the
character table of D4h. The character of a given irrep under the identity operation E de facto tells us
the dimension of the irrep, i.e. how many basis elements it has. We see that D4h has only one- and
two-dimensional irreps. When dealing with one-dimensional irreps the character simply tells us if
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Irrep E 2C4 C2 2C′2 2C′′2 I 2S4 2σv 2σd σh
A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 -1 -1 1 1 1 -1 -1
B1g 1 -1 1 1 -1 1 -1 1 1 -1
B2g 1 -1 1 -1 1 1 -1 1 -1 1
Eg 2 0 -2 0 0 2 0 -2 0 0

A1u 1 1 1 1 1 -1 -1 -1 -1 -1
A2u 1 1 1 -1 -1 -1 -1 -1 1 1
B1u 1 -1 1 1 -1 -1 1 -1 -1 1
B2u 1 -1 1 -1 1 -1 1 -1 1 -1
Eu 2 0 -2 0 0 -2 0 2 0 0

TABLE 2.1: The D4h character table. Highlighted columns correspond to canonical generating symmetries, as
discussed in the text.

the basis function is even or odd under the given symmetry operation. The meaning behind the
labels for the irreps is ultimately unimportant for our purposes, although it is useful to note that g
and u subscripts refer to the German words “gerade” and “ungerade”, which translate to “even”
and “odd”. These refer to the character of the basis elements under inversion. Table 2.2 lists some
possible bases for various D4h irreps. Different bases are appropriate in for different applications; I
have presented some simple possibilities chosen from Cartesian products and sinusoidal functions.

2.2.1 Transformation of H0 and ∆ under symmetry operations

With that crash course in symmetry operations and irreducible representations under our belt, we
can apply these ideas to superconductivity. When dealing with the BdG Hamiltonian, a sensible
question to ask is how do point symmetry operations act on H0 and ∆? Answering this question will
allow us to examine how H0 and ∆ behave under these symmetries within our model of strontium
ruthenate in Chapter 3. Let us begin with the behaviour of HMF under some point symmetry
operation S , which acts on the creation and annihilation operators in Ψk to give

SHMFS−1 =
1
2 ∑

k
SΨ†

kS−1 Hk SΨkS−1. (2.22)

In order to understand how the spinor Ψk transforms under S , let us first consider how a single
creation operator is transformed. We approach this by considering the action of S on an electronic
state. For simplicity, we will temporarily ignore the “additional” degrees of freedom. These can

Irrep s p d f Sinusoidal
A1g 1 x2 + y2 + z2 cos x + cos y
A2g
B1g x2 − y2 cos x− cos y
B2g xy sin x sin y
Eg {xz, yz}

A1u
A2u z z3 sin z
B1u xyz
B2u z(x2 − y2)
Eu {x, y} {sin x, sin y}

TABLE 2.2: The symmetries of select Cartesian products and sinusoidal functions in D4h. The Cartesian
products are differentiated by the angular momentum of their corresponding spherical harmonics.



2.2. Point groups and irreducible representations 15

easily be reintroduced at the end as a generalisation of the result we will obtain, but for now we
take spin to be the only internal degree of freedom. As an example we can write, quite generally,
the action of S on a spin up state as

S |k, ↑〉 = ck,↑↑ |S : k, ↑〉+ ck,↑↓ |S : k, ↓〉 ,

where the c coefficients are c-numbers, and S : k denotes the transformation of the wavevector
k under S . To proceed, we write |k, α〉 = â†

kα |0〉, where |0〉 is the vacuum state, which will be
unaffected by S :

S â†
k↑ |0〉 = ck,↑↑ â†

S :k↑ |0〉+ ck,↑↓ â†
S :k↓ |0〉 ,

S â†
k↑S−1S |0〉 =

(
ck,↑↑ â†

S :k↑ + ck,↑↓ â†
S :k↓

)
|0〉 ,

S âk↑S−1 |0〉 =
(

ck,↑↑ â†
S :k↑ + ck,↑↓ â†

S :k↓
)
|0〉 .

From this we can conclude that the creation operator â†
k↑ is transformed by S as

S â†
k↑S−1 = ck,↑↑ â†

S :k↑ + ck,↑↓ â†
S :k↓, (2.23)

and, because S is unitary, we also see how the corresponding annihilation operator transforms:

S âk↑S−1 = c∗k,↑↑ âS :k↑ + c∗k,↑↓ âS :k↓. (2.24)

By generalising (2.23) and (2.24) to the corresponding results for spin-down operators, we find that
the action of S on Ψk is given by

S


â↑
â↓
â†
↑

â†
↓

 S−1 =


c∗k,↑↑ c∗k,↑↓ 0 0

c∗k,↓↑ c∗k,↓↓ 0 0

0 0 ck,↑↑ ck,↑↓
0 0 ck,↓↑ ck,↓↓




âS :k↑
âS :k↓

â†
S :−k↑

â†
S :−k↓

 ≡
(

US 0
0 U∗S

)
âS :k↑
âS :k↓

â†
S :−k↑

â†
S :−k↓

 ,

where US is a matrix which describes how the spin degree of freedom changes under S , while
the effect of S on the momentum dependence is being implemented explicitly. US can easily be
generalised to include additional degrees of freedom. Returning to the transformation ofHMF, we
find that we can now write (2.22) as

SHMFS−1 =
1
2 ∑

k
Ψ†
S :k

(
U†

S 0
0 UT

S

)(
H0,k ∆k

∆†
k −HT

0,−k

)(
US 0
0 U∗S

)
ΨS :k. (2.25)

We now play a bit of a trick: instead of associating the US terms with the Ψk spinors, we associate
them with the BdG Hamiltonian, such that we can isolate how Hk transforms under S . If we also
relabel the momentum index under the sum as k→ S−1 : k, we have

SHMFS−1 =
1
2 ∑

k
Ψ†

k

(
U†

S 0
0 UT

S

)(
H0,S−1 :k ∆S−1 :k

∆†
S−1 :k −HT

0,S−1 :−k

)(
US 0
0 U∗S

)
Ψk, (2.26)
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which is to say that S acting onH can be effectively described by

H0,k
S−→ U†

S H0,S−1 :kUS, (2.27)

∆k
S−→ U†

S∆S−1 :kU∗S . (2.28)

It is worth noting that the wavevector k = (kx, ky, kz) transforms just as the Cartesian coordinates
(x, y, z) under point symmetries. In Chapter 3 we will spend some time determining the form of
the US matrices within our model of strontium ruthenate, so that we can apply (2.27) and (2.28).

The time-reversal operation

The discussion so far has revolved around a general point symmetry operator S . It is worth briefly
discussing how the result differs for time-reversal. The crucial difference is that time-reversal is
antiunitary. Referring to the discussion in Section 1.2, we remember that it is implemented by
Θ = UTK, where UT is unitary, and K is the complex conjugation operator. The presence of K
slightly alters the form of (2.27) and (2.28) to give

H0,k
Θ−→ U†

T H∗0,−kUT = U†
T H0,−kUT , (2.29)

∆k
Θ−→ U†

T∆∗−kU∗T , (2.30)

where I have used Θ : k = −k from (1.1), and the fact that H0 is real-valued. Just as for point
symmetries, UT is a unitary matrix.

The transformed pairing potential

Examination of (2.27) and (2.28) show that there is a difference between how H0 and ∆ transform un-
der point symmetry operations. For this reason it is convenient to define ∆̃k, a slightly transformed
version of the pairing potential:

∆̃k ≡ ∆kU†
T ←→ ∆k = ∆̃kUT . (2.31)

This transforms under a point symmetry operation in the same way as H0:

∆̃k
S−→ U†

S∆̃S−1 :kUS. (2.32)

Proof: We begin with the fact that time-reversal commutes with rotations and inversion [75], and
therefore with all point symmetry operations, i.e. SΘ = ΘS (as reflections can be constructed from
a π rotation plus inversion). From (2.27) and (2.29) we have

H0,k
SΘ−−→ U†

SU†
T H∗0,S−1 :−kUTUS, (2.33)

H0,k
ΘS−−→ U†

TUT
S H∗0,S−1 :−kU∗SUT . (2.34)

Setting these equal to each other, we conclude that

UTUS = U∗SUT ←→ UTU∗S = USUT . (2.35)
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Now let us substitute ∆ = ∆̃UT into (2.28):

∆̃kUT
S−→ U†

S∆S−1 :kUTU∗S = U†
S∆S−1 :kUSUT . (2.36)

Finally, using UT
S−→ UT (which can be seen by setting ∆̃ = 1 in the above equation), we reach

(2.32) as a conclusion. Note that this result hinges upon the fact that the time-reversal operator is
antiunitary, unlike the point symmetry operations, which is why UT plays a special role in (2.31).

From its definition we see that the transformed pairing potential has a close connection to the
operation of time-reversal. This will be examined in more detail in Section 3.2.1, once the form of
UT has been discussed. For now I note that in the BCS Hamiltonian (2.18) we have ∆̃ = 1, which
physically implies that the pairing involves time-reversed states. As we will see in Section 3.2.1,
this condition can be relaxed for more general pairing states.
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Chapter 3

Modelling strontium ruthenate

In Chapter 2 we constructed the Bogoliubov de Gennes Hamiltonian, (2.15), for a general supercon-
ducting system involving an arbitrary number of internal degrees of freedom. We introduced the
matrices H0 and ∆̃, which describe the normal state and superconducting state respectively, and
showed how to act on them with point symmetries and time-reversal. In this chapter we take these
results and apply them to modelling strontium ruthenate, which involves restricting ourselves to
two internal degrees of freedom: the spin state of the electrons, and the orbital from which they
originate. As discussed in Chapter 1, it is thought that Cooper pairing in strontium ruthenate arises
primarily from electrons from the ruthenium dxz and dyz orbitals, so these are the only orbitals
included in our model. In this case the Nambu spinor can be written as

Ψk =
(

âkx↑ âkx↓ âky↑ âky↓ â†
−kx↑ â†

−kx↓ â†
−ky↑ â†

−ky↓
)T

, (3.1)

where an x (y) index corresponds to dxz (dyz). H0 and ∆̃ are now 4× 4 matrices. It is convenient to
decompose them in terms of Pauli matrices in orbital and spin space, ηα and σβ respectively:

H0,k =
3

∑
α,β=0

hk,αβ ηα ⊗ σβ, (3.2)

∆̃k =
3

∑
α,β=0

∆k,αβ ηα ⊗ σβ. (3.3)

In conjunction with the 2× 2 identity matrix, σ0 = 12, the Pauli matrices form a spanning basis of
the 2× 2 matrices, so we have lost no generality.

I begin in Section 3.1 by determining the forms of US within our model, for each of the D4h

generating symmetries. The same is done for UT in Section 3.2. These results will allow us to
explicitly implement (2.27)–(2.30). In Section 3.3 we apply some physical restrictions, as well as
assumptions specific to our model, in order to restrict the terms that appear in (3.2) and (3.3), and
specify forms for the momentum-dependent coefficients hk,αβ and ∆k,αβ. I finish in Section 3.4 with
a discussion of the TRSB chiral pairing states that will be used later in this thesis. The analysis
employed in this chapter is rather standard, so the results are not particularly novel, but should
provide a robust understanding of the resulting model of strontium ruthenate.

3.1 Point symmetries

We can understand how the orbital ⊗ spin matrices in (3.2) and (3.3) are affected by the D4h point
symmetry operations by determining which irreducible representation they belong to. In order to
achieve this we will use our physical understanding of the spin and orbital degrees of freedom to
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Spin Pauli matrix C4 : σi νC4 C ′2 : σi νC′2
I : σi νI Irrep

σ0 σ0 +1 σ0 +1 σ0 +1 A1g
σ3 σ3 +1 −σ3 −1 σ3 +1 A2g

{σ1, σ2} {σ2,−σ1} 0 {σ1,−σ2} 0 {σ1, σ2} +2 Eg

TABLE 3.1: The symmetry classification of the spin Pauli matrices in D4h. The irreducible representations are
determined from Table 2.1.

determine the irreps to which each of ηα and σβ matrices belong to respectively. These can then be
combined using a “direct product table”. The behaviour of spin- 1

2 under point symmetries is well
known, so we will begin by considering the spin degree of freedom.

3.1.1 Determining the spin irreps

In order to determine which irrep each of the spin Pauli matrices belongs to, we must know the
form of U[s]

S , the spin part of US, for each of the D4h generating symmetries, C4, C ′2, and I . In the
basis defined by {↑, ↓} these are known to be [76]

U[s]
C4

=

(
eiπ/4 0

0 e−iπ/4

)
, (3.4)

U[s]
C′2

=

(
0 −i
−i 0

)
= −iσ1, (3.5)

U[s]
I =

(
1 0
0 1

)
= σ0. (3.6)

Of these results I note in particular that (3.6) implies that neither |↑〉 nor |↓〉 is affected by inversion:

I |↑〉 .
=

(
1 0
0 1

)(
1
0

)
=

(
1
0

)
= |↑〉 , (3.7)

I |↓〉 .
=

(
1 0
0 1

)(
0
1

)
=

(
0
1

)
= |↓〉 . (3.8)

We can now use (2.27), and equivalently (2.32), in order to determine how each of the spin Pauli
matrices in H0 and ∆̃ transform under the D4h generating symmetries. As an example, consider
how σ3 transforms under C4:

U[s]†
C4

σ3U[s]
C4

=

(
e−iπ/4 0

0 eiπ/4

)(
1 0
0 −1

)(
eiπ/4 0

0 e−iπ/4

)
=

(
1 0
0 −1

)
= σ3. (3.9)

This is to say that σ3 has a character of +1 under C4. As a second example, consider the action of σ1

under the same C4 rotation:

U[s]†
C4

σ1U[s]
C4

=

(
e−iπ/4 0

0 eiπ/4

)(
0 1
1 0

)
eiπ/4

(
eiπ/4 0

0 e−iπ/4

)
=

(
0 −i
i 0

)
= σ2. (3.10)

We see that σ2 is transformed into σ1. It is neither symmetric nor antisymmetric under C4, but
instead σ1 and σ2 form the basis of a two-dimensional irrep.

This process can be repeated for each generating symmetry acting on each spin Pauli matrix,
and the results are collated in Table 3.1. The irreducible representation to which each term belongs
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z

yx

dxz dyz

FIGURE 3.1: Visualisations of the dxz and dyz orbitals, which are involved in the pairing in our model.

is determined by comparing the characters in Table 3.1 to the D4h character table, Table 2.1.

3.1.2 Determining the orbital irreps

When it comes to characterising the orbital Pauli matrices, we follow the same process as was just
applied to the spin degree of freedom. However, the U[o]

S matrices are not well known, and must
instead be determined specifically for the orbitals included in our model. As shown in Section
2.2.1, the form of US arises from how the single-electron states behave under the point symmetry S .
So we can determine the elements of, say, U[o]

C4
by acting on each of the dxz and dyz orbital states

with C4. These orbitals are shown diagrammatically in Figure 3.1. As spherical harmonics they are
written in terms of Cartesian coordinates as

dxz =

√
15
4π

xz
x2 + y2 + z2 , (3.11)

dyz =

√
15
4π

yz
x2 + y2 + z2 . (3.12)

It is fairly straightforward to use the diagrams in Figure 3.1 to determine how these orbitals
transform under the generating symmetries. For example, C4, a quarter rotation about the z axis,
will take dxz → dyz and dyz → −dxz. This can be verified by acting C4 on the Cartesian coordinates
that appear in (3.11) and (3.12). Under C4 we have x → y, y→ −x, and z→ z, so

dxz
C4−→
√

15
4π

yz
(x2 + y2 + z2)

= dyz, (3.13)

dyz
C4−→
√

15
4π

−xz
(x2 + y2 + z2)

= −dxz, (3.14)

in agreement to what we concluded already. Repeating this analysis for the other two generating
symmetries, we find

C4 |dxz〉 =
∣∣dyz

〉
, C ′2 |dxz〉 = − |dxz〉 , I |dxz〉 = |dxz〉 ,

C4
∣∣dyz

〉
= − |dxz〉 , C ′2

∣∣dyz
〉
=

∣∣dyz
〉

, I
∣∣dyz

〉
=
∣∣dyz

〉
.

(3.15)

We see that these two orbitals form the basis of a two-dimensional irrep, and comparison with
Table 2.1 tells us that this is Eg, as both orbitals are symmetric under inversion. Using the results of
Section 2.2.1, we can use (3.15) to determine the forms of the US matrices. Referring back to 2.2.1,
we see that the coefficients given to us by (3.15) technically correspond to U[o]∗

S , but since they are
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Orbital Pauli matrix C4 : ηi νC4 C′2 : ηi νC′2
I : ηi νI Irrep

η0 η0 +1 η0 +1 η0 +1 A1g
η2 η2 +1 −η2 −1 η2 +1 A2g
η3 −η3 −1 η3 +1 η3 +1 B1g
η1 −η1 −1 −η1 −1 η1 +1 B2g

TABLE 3.2: The symmetry classification of the orbital Pauli matrices in D4h. The irreducible representations
are determined from Table 2.1.

all real-valued this is not a problem. We have

U[o]
C4

=

(
0 1
−1 0

)
= iη2, (3.16)

U[o]
C′2

=

(
1 0
0 −1

)
= η3, (3.17)

U[o]
I =

(
−1 0
0 −1

)
= −η0. (3.18)

We can now use these matrices to act on each of the orbital Pauli matrices with each of the
generating symmetries via the matrix multiplication U[o]†

S ηiU
[o]
S , just as we did for spin. The results

are summarised in Table 3.2, along with the irreducible representation to which each orbital Pauli
matrix must therefore belong to.

3.1.3 Orbital ⊗ spin matrices

Having classified which irreducible representation each of the spin and orbital Pauli matrices
belong to, we are now interested in the classification of each orbital ⊗ spin matrix as a whole. As an
example of how to “combine” functions from different irreps, let us take x2− y2 ∈ B1g and z3 ∈ A2u

(refer to Table 2.2). We can determine the irrep to which their product, (x2 − y2)z3, belongs by
applying the D4h generating symmetries directly to this function, i.e.

C4 : (x2 − y2)z3 = (y2 − (−x)2)z3 = −(x2 − y2)z3, (3.19)

C ′2 : (x2 − y2)z3 = (x2 − (−y)2)(−z)3 = −(x2 − y2)z3, (3.20)

I : (x2 − y2)z3 = ((−x)2 − (−y)2)(−z)3 = −(x2 − y2)z3, (3.21)

which tells us that it has the characters νC4 = νC ′2 = νI = −1. Referencing Table 2.1 tells us that
(x2 − y2)z3 therefore belongs to B2u. It turns out that this is true of any product of a function from
B1g with a function from A2u. We write

B1g ⊗ A2u = A2u ⊗ B1g = B2u.

The results of taking the product of functions belonging to any two irreps are tabulated in a direct
product table, which is given for D4h in Table 3.3. The product of two functions belonging to 1D
irreps is a single function belonging to a 1D irrep. The product of a function from a 1D irrep with
each of the basis functions belonging to a 2D irrep results in two functions that form the basis of a
2D irrep. Combining functions from two 2D irreps produces four functions belonging to 1D irreps,
although if we take the four possible products between the basis functions of each irrep we will
not necessarily end up with four functions that each belong to a 1D irrep. We may be required to
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D4h A1g A2g B1g B2g Eg A1u A2u B1u B2u Eu
A1g A1g A2g B1g B2g Eg A1u A2u B1u B2u Eu
A2g A1g B2g B1g Eg A2u A1u B2u B1u Eu
B1g A1g A2g Eg B1u B2u A1u A2u Eu
B2g A1g Eg B2u B1u A2u A1u Eu
Eg A1g, A2g, B1g, B2g Eu Eu Eu Eu A1u, A2u, B1u, B2u

A1u A1g A2g B1g B2g Eg
A2u A1g B2g B1g Eg
B1u A1g A2g Eg
B2u A1g Eg
Eu A1g, A2g, B1g, B2g

TABLE 3.3: The direct product table for combining functions from different irreducible representations in D4h.

take linear combinations in order to find resulting functions that have a definite character under
each of the generating symmetries. The direct product table tells us which irreps each of these four
functions will belong to, but not necessarily which belongs to which. We usually write, for example,
Eg ⊗ Eu = A1u ⊕ A2u ⊕ B1u ⊕ B2u.

Returning to the orbital ⊗ spin matrices, it is a rather straightforward process to determine
which irreps they belong to. For example, we already know from Tables 3.1 and 3.2 that σ3 ∈ A2g

and η1 ∈ B2g. We can then read off Table 3.3 that η1 ⊗ σ3 belongs to B1g. As a slightly more
complicated example, we know that η0 ∈ A1g, while {σ2, σ2} ∈ Eg. Table 3.3 then tells us that the
terms resulting from their products, η0 ⊗ σ1 and η0 ⊗ σ2, form a basis of an Eg irrep. Repeating this
for each possible combination of orbital and spin, I summarise the results in Table 3.4. These apply
to the orbital ⊗ spin parts of the terms that appear in both H0,k and ∆̃k.

3.2 Time-reversal

We now have forms for US = U[o]
S ⊗U[s]

S for each of the D4h generating symmetries. At this point it
makes sense to also examine the form of UT , the unitary matrix associated with time-reversal. We
begin by examining the effect of time-reversal on spin states. From (1.1) we have Θ |↑〉 = |↓〉, and

Orbital ⊗ spin matrix Irrep.
η0 ⊗ σ0 A1g
η2 ⊗ σ3 A1g
η0 ⊗ σ3 A2g
η2 ⊗ σ0 A2g
η3 ⊗ σ0 B1g
η1 ⊗ σ3 B1g
η3 ⊗ σ3 B2g
η1 ⊗ σ0 B2g

{η0 ⊗ σ1, η0 ⊗ σ2} Eg
{η2 ⊗ σ1, η2 ⊗ σ2} Eg
{η3 ⊗ σ1, η3 ⊗ σ2} Eg
{η1 ⊗ σ1, η1 ⊗ σ2} Eg

TABLE 3.4: The D4h irreducible representations to which the orbital ⊗ spin matrices belong, as determined
using Tables 3.1, 3.2, and 3.3.
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Θ |↓〉 = − |↑〉. So with respect to the {↑, ↓} basis we have

U[s]
T =

(
0 1
−1 0

)
= iσ2. (3.22)

The orbital part of UT is even easier to determine, because the dxz and dyz orbitals given in (3.11)
and (3.12) are real-valued functions of spatial coordinates, which are unaffected by time-reversal.
In the {dxz, dyz} basis we must therefore have

U[o]
T =

(
1 0
0 1

)
= η0, (3.23)

although it is worth noting that this conclusion would not necessarily hold in a different basis. For
example, in the {dxz + idyz, dxz − idyz} basis the complex conjugation of time-reversal would lead
to nontrivial behaviour. Putting (3.22) and (3.23) together we obtain

UT = η0 ⊗ iσ2, (3.24)

which is unitary, real-valued, and obeys

U2
T = −1, (3.25)

which is the result of Θ2 = −1 (refer to Section 1.2). Technically (3.25) should read UTU∗T = −1, as

ΘΘ |ψ〉 = ΘUT |ψ〉∗ = UTU∗T |ψ〉 = − |ψ〉 (3.26)

for an arbitrary single-particle state |ψ〉, but this is unimportant because UT is real-valued. In fact,
with the spin part of UT fixed, this condition actually requires that UT as a whole is real-valued,
and therefore (3.25) holds for any two-orbital spin- 1

2 system. Finally, it is worth noting that (3.25) in
conjunction with the unitary nature of UT implies that

UT = −U†
T , (3.27)

which can be seen by multiplying both sides of (3.25) with U†
T .

3.2.1 Implications for ∆̃

At this point we could in theory use (2.29) and (2.30) to characterise how each orbital ⊗ spin part of
H0 and ∆̃ transforms under time-reversal, although this would not provide us many useful insights.
Instead, now that we have a form of UT , we can restate (2.30) as

∆k
Θ−→ U†

T∆∗−kUT = −U†
T∆†

kUT ,

where the second step utilised (2.9). Substituting in ∆ = ∆̃UT from (2.31) gives us

∆̃kUT
Θ−→ −U†

T(∆̃kUT)
†UT = −(U†

T)
2∆̃†

kUT = ∆̃†
kUT ,

where we used (3.25) in the final step. Finally, noting that UT
Θ−→ UT (which can be seen by setting

∆̃ = 1 above), we can conclude that
∆̃k

Θ−→ ∆̃†
k. (3.28)
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A similar argument also shows that
∆̃†

k
Θ−→ ∆̃k. (3.29)

We introduced ∆̃ in Section 2.2.1 because it transformed under point symmetry operations in a
more convenient way than ∆. However, we now see that it also has the convenient property that ∆̃
and ∆̃† are time-reversed counterparts. This useful result underscores the physical motivation for
introducing ∆̃ in the first place, and will play a crucial role in Chapter 5.

3.3 Restrictions to the model

In Chapter 2 we derived the general form of the Bogoliubov de Gennes Hamiltonian under the usual
mean-field assumption. Now that we understand how the point symmetries and time-reversal
act in our model of strontium ruthenate, I will enforce some physical constraints onH which will
restrict the allowed forms of H0 and ∆. In particular I will enforce that

1. H is Hermitian,

2. H obeys the fermionic exchange antisymmetry,

3. H0 has the full symmetry of the lattice (in particular, it is symmetric under spatial inversion),

4. H0 is symmetric under time-reversal, and

5. The dispersion is constant in the z direction, so we can restrict our analysis to the xy-plane.

The first two of these must be obeyed, while the last three are assumptions. It is generally safe to
assume that the normal state of a crystalline solid will satisfy both the third and fourth assumptions,
essentially by definition of the “normal state”. The physical motivation for the final assumption
was discussed in Chapter 1.

3.3.1 General form of H0

Let us first consider the allowed form of H0 under these restrictions. We begin by enforcing the
first requirement, which tells usH† = H =⇒ H†

k = Hk. Examination of (2.16) shows us that this
in turn requires H0,k to be Hermitian. This is particularly easy to enforce when using (3.2), as the
Pauli matrices themselves are Hermitian and linearly independent, so

H†
0,k = H0,k =⇒ h∗k,αβ ηα ⊗ σβ = hk,αβ ηα ⊗ σβ. (3.30)

We can hence conclude that the hk,αβ coefficients are real-valued.
The second requirement does not affect H0, as the matrix elements of H0 only appear in front of

single-particle terms inH, so we can move on to requirement three, that the normal state Hamiltonian
has the full symmetry of the lattice. This is to say that H0 should be invariant under each of the
D4h point symmetries, which broadly implies that each term in (3.2) must independently belong to
A1g. Specifically, we requireH0 to be symmetric under inversion. From (3.6) and (3.18) we know
that inversion acts trivially on the orbital and spin degrees of freedom in our model, i.e. UI = 14,
so (2.27) can be written as

H0,k
I−→ H0,−k. (3.31)



26 Chapter 3. Modelling strontium ruthenate

Enforcing H0 as given by (3.2) to be symmetric under inversion simply requires the hk,αβ coefficients
to be even functions of momentum:

H0,k = H0,−k =⇒ hk,αβ = h−k,αβ. (3.32)

Using (2.29) we can write requirement four as H0,k = U†
T H∗0,−kUT , where we have UT = η0⊗ iσ2

from (3.24). When applying this to (3.2), we find

∑
αβ

hk,αβ ηα ⊗ σβ = ∑
αβ

hk,αβ η∗α ⊗ (σ2σ∗β σ2), (3.33)

where I have also enforced hk,αβ ∈ R and hk,αβ = h−k,αβ from the previous arguments. On an initial
examination this may appear unhelpful, as the equality only holds when we sum over all possible
terms. However, we can simplify the problem at hand by tabulating the values of η∗α and σ2σ∗β σ2 for
each value of α and β respectively:

α 0 1 2 3

η∗α η0 η1 −η2 η3

β 0 1 2 3

σ2σ∗β σ2 σ0 −σ1 −σ2 −σ3

This tells us that η∗α = ±ηα, and σ2σ∗β σ2 = ±σβ, and hence each term in the sum on the right hand
side of (3.33) is equal to the corresponding term on the left hand side up to a factor of −1. As
the Pauli matrices are linearly independent, we can therefore consider each term independently.
Further, we see that there are only six permitted terms that satisfy (3.33), namely {η0, η1, η3} ⊗ σ0

and η2 ⊗ {σ1, σ2, σ3}. In summary, the general form of H0 under these conditions is

H0 = h00 η0 ⊗ σ0 + h10 η1 ⊗ σ0 + h30 η3 ⊗ σ0 + h21 η2 ⊗ σ1 + h22 η2 ⊗ σ2 + h23 η2 ⊗ σ3, (3.34)

where each of the hαβ coefficients is an even function of momentum, and each term belongs to A1g.
Table 3.4 can be used to tell us which irrep each of the orbital ⊗ spin matrices in (3.34) belongs to.
The direct product table, Table 3.3, tells us that the corresponding momentum-dependent coefficient
must belong to the same irrep such that the product of the “momentum” and the “orbital ⊗ spin”
terms belongs to A1g, i.e.

H0 term Momentum irrep Orbital ⊗ spin irrep

hk,00 η0 ⊗ σ0 A1g A1g

hk,01 η1 ⊗ σ0 B2g B2g

hk,03 η3 ⊗ σ0 B1g B1g

{hk,21 η2 ⊗ σ1, hk,22 η2 ⊗ σ2} Eg Eg

hk,23 η2 ⊗ σ3 A1g A1g

where the Eg terms are combined in such a way as to produce two overall A1g terms.
We are now at a point where we can enforce assumption five, which restricts our model to two

spatial dimensions, the xy-plane. By doing this we will be able to eliminate some of the terms from
(3.34) by considering the σh mirror symmetry, which corresponds to reflection in the xy-plane. We
focus on the behaviour of the momentum dependent coefficients, hk,αβ under σh, so make use of

σh : (kx, ky, kz) = (kx, ky,−kz). (3.35)

Table 2.1 tells us that each of the 1D irreps has a character of +1 under σh, and therefore we have
h00,(kx ,ky ,kz) = h00,(kx ,ky ,−kz), and similarly for h01, h03, and h23. This places no restriction on the
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form of these coefficients in the xy-plane. However, let us now consider the Eg irrep, which has a
character of −2 under σh. This is to say that

h21,(kx ,ky ,kz) = −h21,(kx ,ky ,−kz), (3.36)

and similarly for h22. For kz = 0, this tells us that

h21,(kx ,ky ,0) = −h21,(kx ,ky ,0), (3.37)

which requires h21 = 0 on the xy-plane. The same conclusion can be drawn for h22. Since we are
explicitly restricting our model to only this plane, we must exclude these terms from our model
entirely. The final form of H0 involves just four terms:

H0,k = hk,00︸︷︷︸
A1g

η0 ⊗ σ0︸ ︷︷ ︸
A1g

+ hk,23︸︷︷︸
A1g

η2 ⊗ σ3︸ ︷︷ ︸
A1g

+ hk,30︸︷︷︸
B1g

η3 ⊗ σ0︸ ︷︷ ︸
B1g

+ hk,10︸︷︷︸
B2g

η1 ⊗ σ0︸ ︷︷ ︸
B2g

, (3.38)

which can be shown to have the eigenvalues

Ek± = hk,00 ±
√

h2
k,23 + h2

k,30 + h2
k,10. (3.39)

These correspond to four possible eigenstates of H0, which implies that H0 has a two-fold degeneracy
at each value of k. The reason for this is addressed in Section 4.1, and is closely related to the
spin-degeneracy discussed in Section 1.1.1.

Specific forms of the coefficients

All we know about the hαβ coefficients that appear in (3.38) is which irreducible representation they
belong to. To give them specific forms, Taylor and Kallin [26] use a simple tight binding model
to give h00 + h30 = −2ta cos kx − µ, h00 − h30 = −2tb cos ky − µ, and h10 = 2tc sin kx sin ky, where
ta, tb, tc > 0 are hopping parameters. Assuming the simplest case in which spin-orbital coupling,
described by h23, is isotropic, we obtain

hk,00 = −t1(cos(kx) + cos
(
ky
)
)− µ, (3.40)

hk,23 = λ, (3.41)

hk,30 = −t2(cos(kx)− cos
(
ky
)
), (3.42)

hk,10 = 2t3 sin(kx) sin
(
ky
)
, (3.43)

where ta = (t1 + t2)/2, tb = (t1 − t2)/2, tc = t3, and λ is a constant. Although momentum
dependent spin-orbital coupling is possible, it is likely to be very small in strontium ruthenate [77].
It is fairly straightforward to verify that each of these expressions belongs to the correct irreducible
representation (refer to Table 2.2). I choose the energy scale to be used throughout this thesis to
be defined by t1 = 1. Local density approximation analyses of the band structure of strontium
ruthenate indicate that µ ≈ t1, t3 ≈ 0.1t1 [78], and λ ≈ 0.25t1 [79]. Taylor and Kallin take t2 = t1,
but I choose t2 = 0.8t1 to better match experimental results by comparing the Fermi surface as
calculated from our model to that measured in [55] (refer to Figure 1.2 B).

A “spaghetti plot” of the normal state band structure, and the normal state Fermi surface,
as calculated with from (3.39) using (3.40)–(3.43), are presented in Figure 3.2. The two doubly-
degenerate energy bands correspond to the α and β bands discussed in Section 1.2.2. The Fermi
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FIGURE 3.2: The normal state energy spectrum of strontium ruthenate within our model. (A) is a “spaghatti
plot” showing the dispersion of the two doubly-degenerate bands between specific high symmetry points (see

inset), while (B) shows the orbital character of the bands at the Fermi surface.

surface in Figure 3.2 B is exact for our model, but corresponds to a 2D slice of the true Fermi surface
in three dimensions (refer to Figure 1.2). The α and β bands arise from the hybridisation of the dxz

and dyz orbitals, as indicated by the colour scheme in Figure 3.2 B. As mentioned above, I adjusted
the value of t2 to achieve agreement with Figure 1.2 B regarding the shape of the β sheet.

3.3.2 General form of ∆̃

We now turn to the pairing potential, and see what we can determine about its form by enforcing
the five assumptions from above. As has already been shown, enforcing the first requirement
reduces to H†

k = Hk, which places no restriction on the form of ∆ as the pairing part of the BdG
Hamiltonian is Hermitian by construction. The second requirement is that H is antisymmetric
under particle exchange, which was enforced in (2.9), but is restated in matrix form here:

∆k,= −∆T
−k. (3.44)

Quite generally, this tells us that the terms that compose ∆ must be of the formodd k dependence⊗ orbital-spin matrix that is even under transposition, or

even k dependence⊗ orbital-spin matrix that is odd under transposition.
(3.45)

Using the Pauli matrix decomposition, (3.3), we note that each of the Pauli matrices are even under
transposition, with the exception of σ2, which is odd, so (3.45) can be writtenodd k dependence⊗ {{η0, η1, η3} ⊗ {σ0, σ1, σ3}, η2 ⊗ σ2}, or

even k dependence⊗ {{η0, η1, η3} ⊗ σ2, η2 ⊗ {σ0, σ1, σ3}}.
(3.46)

Finally, when written in terms of ∆̃, as defined in (2.31), (3.46) becomesodd k dependence⊗ {{η0, η1, η3} ⊗ {σ1, σ2, σ3}, η2 ⊗ σ0, }, or

even k dependence⊗ {{η0, η1, η3} ⊗ σ0, η2 ⊗ {σ1, σ2, σ3}}.
(3.47)
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Unlike the normal state, the superconducting state is allowed to break time-reversal and crystal
symmetries such as inversion, so when it comes to the form of ∆̃ we have no need to enforce the
third and fourth assumptions from above. However, ∆̃ can still be written as a linear combination
of individual terms belonging to irreducible representations of D4h. At this point there is a lot
of freedom as to the form of the momentum dependent coefficients, ∆k,αβ. In fact, there are an
unlimited number of possibilities, so I approach this by choosing some simple forms for ∆k,αβ.
When an even function of momentum is needed I take the trivial case ∆k,αβ = 1, which is s-wave
and belongs to A1g. When an odd function of momentum is needed I take ∆k,αβ to be a linear
combination of sin kxa and sin kya, which are p-wave, and form the basis of an Eu irrep. I choose
{sin kxa, sin kya} rather than, say, {kx, ky} so that the resulting states will be regularised to a square
lattice with lattice constant a. A square lattice is appropriate when considering the projection of
a tetragonal crystal into two dimensions. For simplicity I will set a = 1, essentially defining a
length scale to be used throughout this thesis. These p-wave functions are justified in the context
of constructing a chiral p-wave model of strontium ruthenate, although, as discussed in Section
1.3.1, there is recent experimental evidence against such a pairing state. This is not too much of an
issue since the model we are constructing was only ever meant to be illustrative, and also justifies
keeping the s-wave terms for now. Referring back to (3.47), we see that the form of the terms
composing ∆̃ are restricted to{sin kx, sin ky} ⊗ {{η0, η1, η3} ⊗ σ0, η2 ⊗ {σ1, σ2, σ3}}, or

1⊗ {{η0, η1, η3} ⊗ {σ1, σ2, σ3}, η2 ⊗ σ0}.
(3.48)

In order to determine the resulting irrep of each term we can use the direct product table. This is
rather easy for most terms in (3.48) for which we are taking the product between two 1D irreps,
or a 2D irrep and a 1D irrep. For example, Table 3.4 tells us that η3 ⊗ σ0 belongs to B1g, and hence
1⊗ η3 ⊗ σ0 does as well. Things becomes more complicated when we want to combine two 2D
irreps, i.e. the Eu momentum irrep {sin kxa, sin kya} with one of the Eg orbital ⊗ spin matrices. As
an example, let us consider {sin kx, sin ky} ⊗ {η0 ⊗ σ1, η0 ⊗ σ2}. Table 3.3 tells us

Eu ⊗ Eg = A1u ⊕ A2u ⊕ B1u ⊕ B2u, (3.49)

which is to say that we should expect four resulting terms, and that their irreps will be A1u, A2u, B1u,
and B2u. Let us naively guess that the four terms will be sin kx η0 ⊗ σ1, sin kx η0 ⊗ σ2, sin ky η0 ⊗ σ1,
and sin ky η0⊗ σ2. Unfortunately (3.49) does not tell us which of these terms belongs to which irrep,
so we must consider the behaviour of each resulting term under the generating symmetries:

∆̃ term C4 C ′2 I
sin kx η0 ⊗ σ1 sin ky η0 ⊗ σ2 sin kx η0 ⊗ σ1 − sin kx η0 ⊗ σ1

sin kx η0 ⊗ σ2 − sin ky η0 ⊗ σ1 − sin kx η0 ⊗ σ2 − sin kx η0 ⊗ σ1

sin ky η0 ⊗ σ1 − sin kx η0 ⊗ σ2 − sin ky η0 ⊗ σ1 − sin ky η0 ⊗ σ1

sin ky η0 ⊗ σ2 sin kx η0 ⊗ σ1 sin ky η0 ⊗ σ2 − sin ky η0 ⊗ σ1

At first glance there seems to be a problem here: we cannot assign a character to any of the
terms under the C4 and C ′2 symmetries. However, we have just been a bit narrow-minded: rather
than dealing with the four terms presented here, we must instead consider linear combinations.
By eye-balling the transformations under the generating symmetries we can determine that the
following terms have definite characters under each of the generating symmetries, and hence we
can determine which irrep they belong to:
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∆̃ term Irrep Momentum Orbital Spin
η0 ⊗ σ0 A1g s-wave (e) e singlet (o)
η2 ⊗ σ3 A1g s-wave (e) o triplet (e)
η3 ⊗ σ0 B1g s-wave (e) e singlet (o)
η1 ⊗ σ0 B2g s-wave (e) e singlet (o)

{η2 ⊗ σ1, η2 ⊗ σ2} Eg s-wave (e) o triplet (e)
sin kx η3 ⊗ σ1 − sin ky η3 ⊗ σ2 A1u p-wave (o) e triplet (e)
sin kx η1 ⊗ σ2 + sin ky η1 ⊗ σ1 A1u p-wave (o) e triplet (e)
sin kx η0 ⊗ σ1 + sin ky η0 ⊗ σ2 A1u p-wave (o) e triplet (e)
sin kx η3 ⊗ σ2 + sin ky η3 ⊗ σ1 A2u p-wave (o) e triplet (e)
sin kx η1 ⊗ σ1 − sin ky η1 ⊗ σ2 A2u p-wave (o) e triplet (e)
sin kx η0 ⊗ σ2 − sin ky η0 ⊗ σ1 A2u p-wave (o) e triplet (e)
sin kx η3 ⊗ σ1 + sin ky η3 ⊗ σ2 B1u p-wave (o) e triplet (e)
sin kx η1 ⊗ σ2 − sin ky η1 ⊗ σ1 B1u p-wave (o) e triplet (e)
sin kx η0 ⊗ σ1 − sin ky η0 ⊗ σ2 B1u p-wave (o) e triplet (e)
sin kx η3 ⊗ σ2 − sin ky η3 ⊗ σ1 B2u p-wave (o) e triplet (e)
sin kx η1 ⊗ σ1 + sin ky η1 ⊗ σ2 B2u p-wave (o) e triplet (e)
sin kx η0 ⊗ σ2 + sin ky η0 ⊗ σ1 B2u p-wave (o) e triplet (e)
{sin kx η0 ⊗ σ3, sin ky η0 ⊗ σ3} Eu p-wave (o) e triplet (e)
{sin kx η1 ⊗ σ3, sin ky η1 ⊗ σ3} Eu p-wave (o) e triplet (e)
{sin kx η2 ⊗ σ0, sin ky η2 ⊗ σ0} Eu p-wave (o) o singlet (o)
{sin kx η3 ⊗ σ3, sin ky η3 ⊗ σ3} Eu p-wave (o) e triplet (e)

TABLE 3.5: Once we have restricted the form of the momentum-dependent coefficients, there are 26 pairing
terms in our model. These are listed, along with the irreducible representation to which they belong, and the

exchange symmetry of their momentum, orbital, and spin states.

∆̃ term νC4 νC′2
νI Irrep

sin kx η0 ⊗ σ1 + sin ky η0 ⊗ σ2 1 1 −1 A1u

sin kx η0 ⊗ σ2 + sin ky η0 ⊗ σ1 −1 −1 −1 B2u

sin kx η0 ⊗ σ1 − sin ky η0 ⊗ σ2 −1 1 −1 B1u

sin kx η0 ⊗ σ2 − sin ky η0 ⊗ σ1 1 −1 −1 A2u

This process must be repeated for each combination of momentum and matrix terms in (3.48). The
resulting terms, and the irreps they belong to, are presented in Table 3.5. For each term I have also
stated whether the orbital degree of freedom is even or odd under particle exchange (implemented
by matrix transposition), and whether it is spin-singlet or spin-triplet (which correspond to the spin
degree of freedom being odd or even under particle exchange respectively). Note that the s-wave
spin-triplet and p-wave spin-singlet states can only exist because the orbital degree is odd under
particle exchange.

Finally, we want to restrict this model to two spatial dimensions. The momentum dependence
of the even-parity terms was chosen to be 1, which belongs to A1g. Table 2.1 tells us that A1g terms
have a character of +1 under the σh reflection, which is unsurprising. Similarly, the odd-parity
terms have Eu momentum dependence, and therefore a character of +2 under σh. For this reason,
unlike H0, we are unable to eliminate any terms from Table 3.5.

3.4 Chiral pairing states

In this thesis I am ultimately interested in superconducting states with a non-zero anomalous Hall
conductivity, which requires TRSB. As shown in Section 2.2.1, time-reversal is broken if ∆̃ 6= ∆̃†.
One might think that any of the states listed in Table 3.5 could be TRSB if they had a complex-valued
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amplitude, such as ∆̃ = ∆0η0 ⊗ σ0 where ∆0 ∈ C. However, as discussed in Section 2.1.1, we can
always choose a gauge such that ∆0 is real-valued, so this is not the case.

A chiral pairing state is one in which the phase of the pairing potential winds as k moves about
some axis on the Fermi surface of the underlying material [42]. For example, the state

∆̃ = ∆0(sin kx + i sin ky)η0 ⊗ σ3, (3.50)

constructed as a complex superposition of terms from the first Eu irrep in Table 3.5 undergoes
a phase winding of 2π as we move in a loop about z axis. It breaks time-reversal symmetry no
matter the phase of ∆0, since ∆̃† = ∆∗0(sin kx − i sin ky)η0 ⊗ σ3. Before we continue, it is worth
considering why a superconductor would even be chiral in the first place. Ultimately this comes
down to a question of energy minimisation. The free energy of a superconducting state is given
by Ginzburg–Landau theory, and is generically dependent on ∼ |∆k|2, averaged over the Fermi
Surface [42]. This is why the opening of a band gap is essential for stabilising the superconducting
state, as discussed in Section 1.1.1. Unconventional superconductors tend to develop momentum-
dependent “nodes” in the gap. As an example, consider the fist A1u state in Table 3.5, which
vanishes at k = 0, (0, π), (π, 0), and (π, π). These are called point nodes. Nodal structure in the
pairing potential is generally bad for superconductivity as it reduces the average gap magnitude.
However, if two pairing states, say ∆1 and ∆2, happen to be degenerate it is possible to form the
pairing state a∆1 + b∆2 as a linear superposition. Without going into the details, Ginzburg–Landau
theory tells us that the free energy is always minimised by taking (a, b) to have one of the following
forms [23]: (∆0, 0), (0, ∆0), (∆0,±∆0), or (∆0,±i∆0), which limits the possible relative phase and
magnitude of the two terms. The last of these, corresponding to a chiral state, maximises the gap
magnitude over the Brillouin zone, and so will often be preferred from an energy minimisation
point of view. A more precise analysis as to the preferred pairing state requires the microscopic
details of a given system, but I am only trying to motivate why a chiral state might be favoured, as
we already know they occur in strontium ruthenate (refer to Section 1.3).

3.4.1 Chiral states within 2D irreps

The easiest way to find degenerate pairing potentials is if they belong to the same two-dimensional
irrep: if the symmetries of the crystal allow two states to be transformed into each other they must
have the same energy. Further, a chiral state is the most natural way for a two-dimensional irrep to
break time-reversal. As an example, consider the first of the Eu irreps from Table 3.5. A pairing
state belonging to this irrep can be written completely generally as

∆̃k = ∆0,x sin kxη0 ⊗ σ3 + ∆0,y sin kyη0 ⊗ σ3, (3.51)

where ∆0,x and ∆0,y are complex numbers. Currently there is complete freedom over the phase
and magnitude of both ∆0,x and ∆0,y, but the Ginzburg–Landau argument from above reduces
the possibilities. In particular, I choose the (∆0,x, ∆0,y) = (∆0,±i∆0) chiral state. The ± cases are
degenerate, so I choose the + case, and we end up with (3.50). The other choice corresponds to the
opposite chirality, which is to say the phase winds in the opposite direction. In terms of the polar
Kerr effect the only difference would be that the reflected light would be rotated in the opposite
direction. The exact same argument applies to pairing states constructed from all four of the Eu

irreps. We can write a general Eu pairing state as

∆̃k = ∆k,01η0 ⊗ σ3 + ∆k,11η1 ⊗ σ3 + ∆k,22η2 ⊗ σ0 + ∆k,31η3 ⊗ σ3, (3.52)
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where

∆k,01 = ∆0,01(sin kx + i sin ky), (3.53)

∆k,11 = ∆0,11(sin ky + i sin kx), (3.54)

∆k,22 = ∆0,22(sin kx + i sin ky), (3.55)

∆k,31 = ∆0,31(sin kx − i sin ky). (3.56)

Note that once I chose the sin kx + i sin ky form for ∆01, the chirality of the other three terms was
fixed by requiring that all four terms transform in exactly the same way under the D4h symmetries.
The chirality of ∆k,01 and ∆k,22 is opposite that of ∆k,11 and ∆k,31. There is still freedom over the
relative magnitude and phase of all four terms, although this will be addressed in Chapter 6.

As well as the Eu irreps, Table 3.5 also includes one Eg irrep. Although it has trivial momentum
dependence in the orbital-spin basis, it may have some explicit nontrivial momentum dependence
when projected into a different basis. For this reason, a pairing state of the form

∆̃ = ∆0 (η2 ⊗ σ1 + iη2 ⊗ σ2) (3.57)

can be chiral. This state will be readdressed in the next chapter.

3.4.2 Chiral superpositions of 1D irreps

Although superconducting states belonging to the same multi-dimensional irrep are required to be
degenerate, it is possible that any two states happen to be close enough in energy to form a chiral
state [36]. These mixed-irrep states tend to be more likely in systems with some externally tunable
parameter that affects the relative energy of the respective pairing states, and have been proposed
in materials such as UTe2 [80, 81], U1−xThxBe13 [82], and even strontium ruthenate [83, 84]. It is
conceivable that the pairing state in strontium ruthenate is formed as a chiral superposition of say
the first A1u and the first A2u terms in Table 3.5, i.e.

∆̃k = (sin kx + i sin ky)η3 ⊗ σ1 ± (i sin kx − sin ky)η3 ⊗ σ2. (3.58)

States of this form will be revisited in Chapter 6. Pairing states involving terms from, say, two
different A1u irreps are also plausible, but would not be chiral, so are irrelevant for our purposes.

Summary

This chapter has developed a simple two-orbital model of superconductivity in strontium ruthenate
by utilising physical arguments to determine which terms can appear in the H0 and ∆ matrices.
Simple, physically motivated momentum dependences were chosen for each term. By restricting
the model to two dimensions we found four terms to be permitted in the normal state, along with
26 pairing terms. The possibility of chiral pairing states was examined due to their relevance to the
anomalous Hall effect, and these will be further considered in the following chapters.
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Chapter 4

Stability of the superconducting state

So far we have constructed a simple two-orbital model of superconductivity in strontium ruthenate,
which includes the 26 pairing terms listed in Table 3.5. A general pairing state within this model
could involve an arbitrary superposition of these terms, although experimental and theoretical
results have motivated us to only consider chiral pairing states, which can be constructed as a
complex superposition of two terms. However, an arbitrary chiral state will not necessarily exhibit
an anomalous Hall conductivity, or even form a stable pairing state. The conditions that lead to
a non-zero Hall conductivity are considered in the next chapter, while the stability of the various
terms in Table 3.5 are the focus of this chapter.

Referring to Figure 1.1, and the related discussion in Section 1.1.2, we recall that a band gap
can be opened either at the Fermi surface, corresponding to the pairing of electrons from the same
normal state energy band, or away from the Fermi surface, corresponding to the pairing of electrons
from different bands. The resulting pairing is said to be intra- or interband respectively, and a
general superconducting state can involve both. Within the “weak-coupling” approximation, the
opening of a band gap across the Fermi surface is essential for stabilising the superconducting state
[32, 73] as it leads to a finite energy gap between the occupied and unoccupied states. A weak-
coupling approach is justified in the case that the pairing potential is of a much smaller energy scale
that the normal state parameters, or equivalently, when the critical temperature is much smaller
than the Fermi temperature, which is the case for strontium ruthenate (kBTc ≈ 1.2× 10−4 eV [57]
and εF ≈ 0.4 eV [26, 78]). A superconducting state with less intraband pairing will have a lower
critical temperature, and ultimately the absence of intraband pairing implies that there will not be
a transition to a superconducting state at all. On the other hand, interband pairing is generally
considered to be detrimental to the formation of a superconducting state as it competes with the
intraband pairing [31, 32].

In this section I will examine the presence of intra- and interband pairing in the terms included
in our model. Unfortunately, the orbital-spin basis used to construct these terms does not directly
provide us with information as to which energy band the paired electrons originate from, so
we must consider the “pseudospin-band” basis, which is introduced in Section 4.1. The explicit
transformation from a orbital-spin basis to the pseudospin-band basis can get complicated. Rather
than working through these calculation, I will instead use the concept of superconducting fitness to
examine the stability of the pairing terms in our model. This approach is introduced in Section 4.2,
and allows us to gain insight into the intra- and interband nature of the pairing, all while working
in the orbital-spin basis. While the superconducting fitness is a well understood, albeit relatively
recent concept, the calculations and analysis in Section 4.2.1 are specific to our model and have not
been performed before.
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4.1 The pseudospin-band basis

Our model of strontium ruthenate involves three degrees of freedom: momentum, spin, and orbital.
Each of the internal degrees of freedom have two possible values, so there must be four distinct
eigenstates at each value of k. In general, each of these eigenstates can have a different energy,
but when it comes to the normal state we are subject to Kramer’s theorem, which states that
time-reversal symmetric systems with half-integer spin have doubly-degenerate eigenstates [33].
Specifically, the eigenstate |ψ〉 is degenerate with its time-reversed counterpart Θ |ψ〉. This can be
shown by writing the single-particle normal state eigenstates as |k, s, n〉, i.e.

H0 |k, s, n〉 = Eksn |k, s, n〉 , (4.1)

where, despite suggestive notation, we do not currently know how to interpret the s and n labels.
AsH0 is symmetric under time-reversal, we have ΘH0 = H0Θ, and hence

H0Θ |k, s, n〉 = ΘH0 |k, s, n〉 = ΘEksn |k, s, n〉 = EksnΘ |k, s, n〉 , (4.2)

where the last step is allowed because energy eigenvalues are real-valued. This says that the state
|k, s, n〉 is degenerate with the state Θ |k, s, n〉. Bear in mind that Θ |k〉 = |−k〉, so we have not yet
unveiled a degeneracy at each value of k, but we can go a step further because the normal state is
also symmetric under spatial inversion. We therefore have

H0IΘ |k, s, n〉 = IΘH0 |k, s, n〉 = EksnIΘ |k, s, n〉 , (4.3)

which is to say that |k, s, n〉 is degenerate with IΘ |k, s, n〉. Noting that

IΘ |k〉 = I |−k〉 = |k〉 , (4.4)

we can conclude that the states |s, n〉 and IΘ |s, n〉 are degenerate at each value of k. In other
words, the |k, s, n〉 eigenstates form two doubly-degenerate energy bands. This argument is entirely
general, in the sense that it does not depend on how the orbital or spin degrees of freedom transform
under inversion or time-reversal. I choose to let n label the energy band, which will be unaffected by
both time-reversal and inversion. In the case of two energy bands, as we have here, it is convenient
to write |n〉 = |±〉, referring to the upper and lower bands given by (3.39). I refer to s as the
pseudospin, because it is possible to choose a basis such that it transforms as spin does under both
inversion and time-reversal1 [86, 87], i.e.

I |k, s, n〉 = |−k, s, n〉 , (4.5)

Θ |k, s, n〉 = s |−k,−s, n〉 , (4.6)

where s = ± labels the two possible pseudospin states.

4.1.1 The gamma matrices and the flattened Hamiltonian

For the following discussion it will be convenient to introduce a set of five gamma matrices, {γi},
which are defined in Table 4.1 in terms of the orbital ⊗ spin matrices that appear in (3.34), and
satisfy the following properties:

1This is true when the pseudospin is defined as a linear combination of the orbital and spin degrees of freedom, as is the
case here. Other usages of the term “pseudospin” do not satisfy this criteria. See, for example, Ref. [85].
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Orbital ⊗ spin matrix Gamma matrix
η0 ⊗ σ0 γ0

η1 ⊗ σ0 γ1

η3 ⊗ σ0 γ2

η2 ⊗ σ1 γ3

η2 ⊗ σ2 γ4

η2 ⊗ σ3 γ5

η2 ⊗ σ0 iγ1γ2

η1 ⊗ σ1 iγ2γ3

η1 ⊗ σ2 iγ2γ4

η1 ⊗ σ3 iγ2γ5

η3 ⊗ σ1 iγ3γ1

η0 ⊗ σ2 iγ3γ5

η3 ⊗ σ2 iγ4γ1

η0 ⊗ σ3 iγ4γ3

η3 ⊗ σ3 iγ5γ1

η0 ⊗ σ1 iγ5γ4

TABLE 4.1: The definition of the gamma matrices used in this thesis (first six rows), along with expressions for
the orbital ⊗ spin matrices that do not appear in H0 in terms of these gamma matrices (last ten rows).

1. (γi)† = γi, i.e. they are Hermitian,

2. (γi)2 = γ0, and

3. γiγj = −γjγi for i 6= j.

The last two of these properties further imply that

4. [γi, γj] = 0 for i = j and 2γiγj for i 6= j, and

5. {γi, γj} = 2γ0δij, where δij is the Kronecker delta.

By design, H0, as given by (3.34), can be written as a linear combination of all five gamma matrices,
along with γ0 = 1:

H0,k =
5

∑
n=0

ck,nγn, (4.7)

where cn are real-valued even functions of momentum. We identify c0 = h00, c1 = h10, c2 = h30,
c3 = h21, c4 = h22, and c5 = h23. In fact, any two-orbital system that is symmetric under both
inversion and time-reversal can be written in terms of a set of gamma matrices that satisfy these
properties, although the specific matrices will depend on the details of the system. To understand
why this is the case, note that (3.34) was derived in the case that UI = η0 ⊗ σ0 and UT = η0 ⊗ iσ2,
which also happen to describe how the pseudospin-band eigenstates transform in (4.5) and (4.6).
This is to say that H0 can be written as (4.7) in the pseudospin-band basis for any two-orbital system
with inversion and time-reversal symmetry. When transformed back to the orbital-spin basis the
specific form of the gamma matrices may change (although not in our case), but they must still
satisfy the properties outlined above.

For future reference it is convenient to define the “flattened” normal state Hamiltonian:

H̃0,k =
H0,k − ck,0γ0

|ck|
=

5

∑
n=1

ck,n

|ck|
γn =

5

∑
n=1

ĉk,nγn, (4.8)



36 Chapter 4. Stability of the superconducting state

where c = (c1, c2, c3, c4, c5) is a vector of the momentum-dependent coefficients, and ĉn,k are the
corresponding unit vectors, such that

5

∑
n=1

ĉ2
k,n = 1. (4.9)

Notationally, I will tend to drop the explicit k index from the cn,k coefficients. Using the properties
of the gamma matrices outlined above, we see that H̃0 satisfies

H̃2
0 = γ0. (4.10)

Further, from (3.39), the eigenvalues of H0 are given by Ek± = c0 ± |c|, and therefore the flattened
Hamiltonian satisfies the eponymous property that

H̃0,k |k, s,±〉 = ± |k, s,±〉 , (4.11)

where |±〉 indicates the band degree of freedom. Finally, (4.11) can be used to show that H̃0 can be
interpreted in terms of the projection operator onto the |±〉 band:

P± =
γ0 ± H̃0

2
. (4.12)

Once restricted to two spatial dimensions, we set c3 = c4 = 0 so as to obtain (3.38), in which case it

is to be understood that ĉi = ci/
√

c2
1 + c2

2 + c2
5

4.2 The superconducting fitness functions

In the pseudospin-band basis the pairing potential is written in the general form

∆k =

(
∆k,++ ∆k,+−
∆k,−+ ∆k,−−

)
, (4.13)

where ∆±±′ = 〈±|∆ |±′〉 are 2× 2 matrices in pseudospin space. The overall strength of the pairing
can be quantified by adding together

∣∣∆ij
∣∣2 for each element of ∆, i.e.

Tr{∆∆†} = Tr{∆++∆†
++ + ∆+−∆†

+− + ∆−+∆†
−+ + ∆−−∆†

−−}, (4.14)

where ∆†
±±′ = 〈±|∆ |±′〉

† = 〈±′|∆† |±〉, so

Tr{∆±±′∆†
±±′} = ∑

s,s′
〈s,±|∆

∣∣s′,±′〉 〈s′,±′∣∣∆† |s,±〉

= ∑
s,s′
〈s| P±∆P±′

∣∣s′〉 〈s′∣∣P±′∆†P± |s〉

= ∑
s
〈s| P±∆P±′P±′∆†P± |s〉 = Tr{P±∆P±′P±′∆†P±}.

Considering the intra- and interband contributions to (4.14) separately, we can write

Tr{∆++∆†
++ + ∆−−∆†

−−} = Tr{P+∆P+P+∆†P+ + P−∆P−P−∆†P−}, (4.15)

Tr{∆+−∆†
+− + ∆−+∆†

−+} = Tr{P+∆P−P−∆†P+ + P−∆P+P+∆†P−}. (4.16)
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Focussing on just the intraband pairing for now, we can use the cyclic nature of the trace and the
fact that PiPi = Pi to write (4.15) as

Tr{∆++∆†
++ + ∆−−∆†

−−} = Tr{P+∆P+∆† + P−∆P−∆†}.

Substituting in (4.12) and (2.31) yields

Tr{∆++∆†
++ + ∆−−∆†

−−} =
1
4

Tr{(γ0 + H̃0)∆̃UT(γ
0 + H̃0)U†

T∆̃† + (γ0 − H̃0)∆̃UT(γ
0 − H̃0)U†

T∆̃†}

=
1
4

Tr{(γ0 + H̃0)∆̃(γ0 + H̃0)∆̃† + (γ0 − H̃0)∆̃(γ0 − H̃0)∆̃†}

=
1
4

Tr{2H̃0∆̃H̃0∆̃† + 2∆̃∆̃†},

where the second step used (2.29), and the fact that H0 is symmetric under time-reversal. One may
note that (2.29) tells us that H0 actually transforms under time-reversal as ΘH0,kΘ−1 = U†

T H∗0,−kUT ,
but (3.27) tells us that UT = −U†

T , so they can be interchanged to give ΘH0,kΘ−1 = UT H∗0,−kU†
T , as

is used here. By exploiting the cyclic nature of the trace, and (4.10), it is fairly straightforward to
show that this can be written as

Tr{∆++∆†
++ + ∆−−∆†

−−} =
1
4

Tr{
∣∣[H̃0, ∆̃]+

∣∣2}, (4.17)

where [·, ·]+ = {·, ·} is the anticommutator. An analogous derivation can be used to show that the
strength of the interband pairing is quantified by

Tr{∆++∆†
++ + ∆−−∆†

−−} =
1
4

Tr{
∣∣[H̃0, ∆̃]−

∣∣2}, (4.18)

where [·, ·]− = [·, ·] is the commutator. Motivated by (4.17) and (4.18), I identify the superconducting
fitness functions [32]

F±,k = [H̃0,k, ∆̃k]±, (4.19)

which quantify the presence of intra- and interband pairing respectively. From (4.14) we see that
they satisfy

Tr{|F+|2}+ Tr{|F−|2} = 4 Tr{∆∆†} = 4 Tr{∆̃∆̃†}, (4.20)

where the second step used (2.31), and the unitary nature of UT . This result emphasises the fact that
the presence of interband pairing competes with intraband pairing, and is therefore detrimental to
the formation of a stable superconducting state in the weak-coupling regime.

Although I have motivated their introduction via the pairing strength Tr{∆∆†}, the fitness
functions also explicitly control the formation of the superconducting instability in a single pairing
channel via their presence in the “linearised gap equation” [31, 32]. In terms of our model, each row
in Table 3.5 corresponds to a different pairing “channel”. For convenience, these are reproduced in
Table 4.2, along with each channel expressed in terms of the gamma matrices. In this chapter I will
calculate Tr{|F±,k|2} for each term in Table 3.5, which can be spilt into three “cases”:

1. ∆̃ = ∆0γ0,

2. ∆̃ = ∆0γi, and

3. ∆̃ = ∆0(aγiγj ± bγiγk),

where ∆0 is some complex amplitude (not explicitly shown in Table 4.2), i 6= j 6= k ∈ [1, 5], and
a, b ∈ R. Any expressions in Table 4.2 that do not match one of these four cases exactly can easily
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Case ∆̃ term Irrep
1 η0 ⊗ σ0 γ0 A1g

2

η2 ⊗ σ3 γ5 A1g
η3 ⊗ σ0 γ2 B1g
η1 ⊗ σ0 γ1 B2g

{η2 ⊗ σ1, η2 ⊗ σ2} {γ3, γ4} Eg

3

sin kx η3 ⊗ σ1 − sin ky η3 ⊗ σ2 −i sin kx γ1γ3 + i sin ky γ1γ4 A1u
sin kx η1 ⊗ σ2 + sin ky η1 ⊗ σ1 i sin kx γ2γ4 + i sin ky γ2γ3 A1u
sin kx η0 ⊗ σ1 + sin ky η0 ⊗ σ2 −i sin kx γ4γ5 + i sin ky γ3γ5 A1u
sin kx η3 ⊗ σ2 + sin ky η3 ⊗ σ1 −i sin kx γ1γ4 − i sin ky γ1γ3 A2u
sin kx η1 ⊗ σ1 − sin ky η1 ⊗ σ2 i sin kx γ2γ3 − i sin ky γ2γ4 A2u
sin kx η0 ⊗ σ2 − sin ky η0 ⊗ σ1 i sin kx γ3γ5 + i sin ky γ4γ5 A2u
sin kx η3 ⊗ σ1 + sin ky η3 ⊗ σ2 −i sin kx γ1γ3 − i sin ky γ1γ4 B1u
sin kx η1 ⊗ σ2 − sin ky η1 ⊗ σ1 i sin kx γ2γ4 − i sin ky γ2γ3 B1u
sin kx η0 ⊗ σ1 − sin ky η0 ⊗ σ2 −i sin kx γ4γ5 − i sin ky γ3γ5 B1u
sin kx η3 ⊗ σ2 − sin ky η3 ⊗ σ1 −i sin kx γ1γ4 + i sin ky γ1γ3 B2u
sin kx η1 ⊗ σ1 + sin ky η1 ⊗ σ2 i sin kx γ2γ3 + i sin ky γ2γ4 B2u
sin kx η0 ⊗ σ2 + sin ky η0 ⊗ σ1 i sin kx γ3γ5 − i sin ky γ4γ5 B2u
{sin kx, sin ky} η0 ⊗ σ3 −i{sin kx, sin ky} γ3γ4 Eu
{sin ky, sin kx} η1 ⊗ σ3 i{sin kx, sin ky} γ2γ5 Eu
{sin kx, sin ky} η2 ⊗ σ0 i{sin kx, sin ky} γ1γ2 Eu
{sin kx, sin ky} η3 ⊗ σ3 −i{sin kx, sin ky} γ1γ5 Eu

TABLE 4.2: When written in terms of the gamma matrices, the pairing terms listed in Table 3.5 can be split into
three cases: the trivial even-parity state, the nontrivial even-parity states, and the odd-parity states.

be transformed such that they do by adding some overall phase to ∆0 with no loss of generality.
Without going into the details, I also note that in the context of the linearised gap equation, the
application of F−,k is restricted by the requirement that

Tr{H̃(∆̃∆̃† + ∆̃†∆̃)} = 0. (4.21)

Before we calculate the fitness functions we must first verify that (4.21) holds for each case con-
sidered. Given that the eigenvalues of H̃0 are given by (4.11) to be ±1, we see that one way that
this will be satisfied is if ∆̃∆̃† ∝ γ0. Remembering that the gamma matrices are Hermitian, and
γiγi = γ0, it is trivial to show that ∆̃∆̃† = |∆0|2γ0 for the first two cases. For the third we have

∆̃∆̃† = |∆0|2(aγiγj ± bγiγk)(aγjγi ± bγkγi)

= |∆0|2(a2γ0 ± abγiγjγkγi ± abγiγkγjγi + b2γ0)

= |∆0|2(a2γ0 ± abγiγjγkγi ∓ abγiγjγkγi + b2γ0)

= |∆0|2(a2 + b2)γ0,

(4.22)

where we used γiγj = −γjγi. We can conclude that this requirement is satisfied by all pairing
potentials in Table 4.2. This is not to say that linear combinations of these terms will necessarily
satisfy ∆̃∆̃† ∝ γ0, but our goal is to understand the stability of the different channels individually.

4.2.1 Calculation of fitness functions

We can now proceed with the calculation of the fitness functions for each of the three cases outlined
above, in order to learn about the nature of intra- and interband pairing in each of the pairing
channels listed in Table 4.2. The results will be summarised in Table 4.4 at the end of this chapter.
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Case one: ∆̃ = ∆0γ0

We begin by considering the trivial pairing state ∆̃ = ∆0γ0. The interband fitness function is given
by (4.19) to be F−,k = [H̃0, ∆̃]. Taking H̃0 as given in (4.8), we have

F− = ∆0

5

∑
n=1

ĉn[γ
n, γ0] = 0, (4.23)

because the commutator of any matrix with the identity must be zero. We therefore trivially have
Tr{|F−|2} = 0, and can use (4.20) to write

Tr{|F+|2} = 4 Tr{∆̃∆̃†} = 4 Tr{|∆0|2γ0} = 16|∆0|2, (4.24)

where we used the form of ∆̃∆̃† identified above.
These results imply that this pairing channel is “completely fit”, in the sense that the pairing is

entirely intraband. This is unsurprising because (2.31) tells us that ∆̃ ∝ γ0 =⇒ ∆ ∝ UT , which is
to say that this channel only pairs time-reversed states. Due to the Kramer’s degeneracy discussed
above, these must belong to the same band. Further, the intraband fitness, (4.24), is dependent on
only the amplitude of ∆̃, meaning that it is isotropic and has no nodes. This means that, in addition
to belonging to a 1D irrep, this pairing channel is unlikely to form part of a chiral pairing state in
order to minimise its free energy. In terms of the polar Kerr effect, we can essentially ignore it.

Case two: ∆̃ = ∆0γi

We now calculate F+ for the case that ∆̃ = ∆0γi, where i ∈ [1, 5], which corresponds to the five
nontrivial even-parity terms in Table 4.2. Using {γi, γj} = 2γ0δij, we have

F+ = ∆0

5

∑
n=1

ĉn{γn, γi} = 2∆0 ĉiγ
0, (4.25)

and therefore
Tr{|F+|2} = Tr{4|∆0|2 ĉ2

i γ0} = 16|∆0|2 ĉ2
i . (4.26)

Using (4.20), and remembering that ∆̃∆̃† = |∆0|2γ0, we then have

Tr{|F−|2} = 16|∆0|2 − 16|∆0|ĉ2
i = 16|∆0|2 ∑

n 6=i
ĉ2

n, (4.27)

where the last step used (4.9).
These results tell us that, in general, these pairing channels have some level of “unfitness”, in

the sense that they can have interband pairing. The actual details depend on the interplay between
the normal state and the pairing potential: the value of i is determined by the pairing channel
while the form of the ĉn coefficients is dependent on the normal state. For example, the ∆0γ3 and
∆0γ4 pairing states belonging to the Eg irrep have no intraband pairing, since c3 = c4 = 0 in the
two-dimensional form of H0, so (4.26) is vanishing. For this reason, I will ignore these terms from
our model as the Fermi surface does not destabilise under a weak-coupling instability.

The remaining even-parity pairing channels have both intra- and interband pairing. As an
example, consider the ∆̃ = ∆0γ5 pairing channel. The intraband fitness is given by (4.26) to be
dependent on c2

5 = h2
23. Taking the form of h23 from (3.41), we see that the intraband fitness is

isotropic. Conversely, the interband fitness is given by (4.27) to be dependent on c2
1 + c2

2 = h2
10 + h2

30.
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Function Nodes in first Brillouin zone
sin2 kx kx = nπ Fig. 4.1 A

sin2 ky ky = nπ Fig. 4.1 B

sin2 kx + sin2 ky k = (nπ, mπ) Fig. 4.1 C

h2
10 ∼ sin2 kx sin2 ky kx = nπ, or ky = nπ Fig. 4.1 D

h2
30 ∼ (cos kx − cos ky)2 kx = ±ky Fig. 4.1 E

h2
23 = λ2 none -

h2
10 + h2

30 k = 0, or k = (π, π) Fig. 4.1 F

h2
30 + h2

23 none -
h2

23 + h2
10 none -

TABLE 4.3: The zeros (nodes) within the first Brillouin zone of various functions that appear in the supercon-
ducting fitness expressions (refer to Table 4.4). These are used to determine the nodal structure of the intra-

and interband pairing for each pairing channel, and are shown visually in Figure 4.1.

From (3.42) and (3.43) we see that this goes as t2(cos kx − cos ky)2 + 2t3 sin2 kx sin2 ky, which is
rather nontrivial. In particular, Table 4.3 tells us that it has nodes at k = 0 and k = (π, π),
which is to say that the pairing is purely intraband at these points. There may also be additional
“accidental nodes” if specific values of t2 and t3 lead to t2(cos kx − cos ky)2 = −2t3 sin k2

x sin k2
y at

some momentum points.
The corresponding results for all the pairing channels are summarised in Table 4.4, which

is accompanied by Figure 4.1 to provide a visualisation of the nodal structure of various terms.
Note in particular that the ∆0η3 ⊗ σ0 and ∆0η1 ⊗ σ0 pairing states have nontrivial intraband nodal
structure. For example, the η3 ⊗ σ0 channel has vanishing intraband pairing along the kx = ±ky

lines in momentum space. It is quite plausible that, provided they were brought close enough in
energy, these states could form a chiral state of the form ∆0(η3 ⊗ σ0 ± iη1 ⊗ σ0), so as to maximise
the intraband gap magnitude.

Case three: ∆̃ = ∆0(aγiγj + bγiγk)

The third and final case, ∆̃ = ∆0(aγiγj + bγiγk) for i 6= j 6= k ∈ [1, 5] and a, b ∈ R, is the most
complicated we have to consider, and includes all the odd-parity pairing channels. Using the
identity [A, BC] = {A, B}C− B{A, C}, we can calculate the intraband fitness to be

F− = ∆0 ∑
n

ĉn

(
a[γn, γiγj] + b[γn, γiγk]

)
= ∆0 ∑

n
ĉn

(
a{γn, γi}γj − aγi{γn, γj}+ b{γn, γi}γk − bγi{γn, γk}

)
= 2∆0

(
aĉiγ

j − aĉjγ
i + bĉiγ

k − bĉkγi
)

,

(4.28)

where we used {γi, γj} = 2δijγ
0. Continuing with the calculation, we can write Tr{|F−|2} as

4|∆0|2 Tr
{(

aĉiγ
j − aĉjγ

i + bĉiγ
k − bĉkγi

) (
a∗ ĉiγ

j − a∗ ĉjγ
i + b∗ ĉiγ

k − b∗ ĉkγi
)}

. (4.29)

The argument of the trace in this expression can be expanded into 16 terms:

a2 ĉ2
i γ0−a2 ĉi ĉjγ

jγi+abĉ2
i γjγk−abĉi ĉkγjγi−a2 ĉj ĉiγ

iγj + a2 ĉ2
j γ0−abĉj ĉiγ

iγk + abĉj ĉkγ0

+abĉ2
i γkγj−abĉi ĉjγ

kγi + b2 ĉ2
i γ0−b2 ĉi ĉkγkγi−abĉk ĉiγ

iγj + abĉk ĉjγ
0−b2 ĉk ĉiγ

iγk + b2 ĉ2
kγ0, (4.30)
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FIGURE 4.1: The zeros (nodes) in the first Brillouin zone of various functions listed in Table 4.3.

many of which cancel out because γiγj = −γjγi for i 6= j. These have been colour coded, leaving
us with only the terms proportional to γ0:

Tr{|F−|2} = 4|∆0|2 Tr
{(

a2 ĉ2
i + a2 ĉ2

j + b2 ĉ2
i + b2 ĉ2

k + 2abĉj ĉk

)
γ0
}

= 16|∆0|2
(

a2 ĉ2
i + a2 ĉ2

j + b2 ĉ2
i + b2 ĉ2

k + 2abĉj ĉk

)
= 16|∆0|2

(
[a2 + b2]ĉ2

i + [aĉj + bĉk]
2
)

.

(4.31)

In order to determine Tr{|F+|2} we use (4.20) and (4.22) to obtain

Tr{|F+|2} = 16|∆0|2(a2 + b2)− 16|∆0|2
(
[a2 + b2]ĉ2

i + [aĉj + bĉk]
2
)

,

= 16|∆0|2
(

a2 ∑
n 6=i,j

ĉ2
n + b2 ∑

n 6=i,k
ĉ2

n − 2abĉj ĉk

)
.

(4.32)

These results apply to the odd-parity pairing channels, and the specific forms of Tr{|F±|2},
along with the resulting intra- and interband nodal structure for each channel, are shown in Table
4.4. We see that all of these states have momentum-dependent intraband nodes. It is quite plausible
that any of these channels will form chiral states so as to minimise their free energy, either within a
2D irrep, or as the superposition of terms from two 1D irreps.

Summary

Of all the terms in Table 4.4, it is only the Eg channels that we can ignore due to the lack of intraband
pairing, although in the context of chiral pairing states we will also ignore the two A1g pairing
channels due to the isotropic nature of their intraband pairing. This leaves us with 22 possible
pairing terms in our model of strontium ruthenate: those belonging to the B1g, B2g, A1u, A2u, B1u,
B2u, and Eu irreps. Among other results, the role of interband pairing is considered in more detail
in the next chapter, specifically in Section 5.3.2, and we will return to this model in Chapter 6.
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Chapter 5

Anomalous Hall conductivity

The preceding chapters have been spent constructing a model of superconductivity in strontium
ruthenate. This will be put aside for now, so that we can consider the Hall conductivity in a general
system, but we will return to our model in Chapter 6, where we apply the results obtained here.

As discussed in Section 1.2, the polar Kerr effect can be used as an experimental probe for
time-reversal symmetry breaking in bulk superconductors. The anomalous Hall conductivity
of the superconductor in question plays a central role in determining the respective Kerr angle.
However, the presence of a non-zero anomalous Hall conductivity requires further conditions in
addition to the breaking of time-reversal symmetry. My aim in this chapter is to further understand
the conditions required for a two-band superconductor to exhibit a non-zero anomalous Hall
conductivity due to intrinsic mechanisms.

In Section 5.1 I perform an exact calculation of the Hall conductivity in the linear response
regime, while Section 5.2 focusses on an approximate result that applies in the high-frequency,
small-gap limit. This approximation encapsulates many of the details of the exact result, while
simplifying the calculations. It is also directly applicable to some experimental endeavours. I take
advantage of this result in Section 5.3 to derive a necessary condition for a non-vanishing Hall
conductivity which applies to a rather general set of models. The work presented in Section 5.3 is
new, and comprises some of the core results of this thesis.

5.1 Exact calculation of the Hall conductivity

As discussed in Section 1.2.2, the Hall conductivity is defined as the antisymmetric part of the
conductivity tensor,

σH(ω) =
σxy(ω)− σyx(ω)

2
. (5.1)

Calculation of the conductivity tensor for an arbitrary applied field is difficult, so the usual approach
is to consider the linear response regime, in which the applied electric field has a small enough
magnitude such that the current is directly proportional to its intensity. The name given to the set
of correlation functions that describe linear responses are Kubo formulas, and the Kubo formula for
electrical conductivity can be shown to be given by [88]

σij(ω) =
i
ω

(
πij(ω) +

n0q2

m
δij

)
, (5.2)

where πij is the correlator between the i and j components of the current, n0, q, and m are the number
density, charge, and mass of the charge carriers, and δij is the Kronecker delta. By convention, all
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frequencies are in units of h̄. We see that the Hall conductivity can be written as

σH(ω) =
i

2ω

[
πxy(ω)− πyx(ω)

]
, (5.3)

which is particularly convenient because correlation functions are well understood in many-body
physics. In this section we will use these well known results to derive a form of the Hall conductivity
in terms of Green’s functions, which can be calculated directly from the BdG Hamiltonian, making
the resulting expression useful for both analytical and numerical calculations. We approach this via
the Matsubara formalism, in which the Matsubara current-current correlator is given by [88]

πij(iωn) =
∫ β

0
dτ eiωnτπij(τ), (5.4)

where ωn = 2nπ/β is a bosonic Matsubara frequency, τ is imaginary time,

πij(τ) = −
1
N
〈
TτJi(τ)Jj(0)

〉
, (5.5)

is the imaginary-time current-current correlator, N is the number of lattice points, Tτ is the
imaginary-time-ordering operator, and Ji is the i component of the current operator. At the end of
our calculation we can determine the real-frequency correlator, πij(ω), via analytic continuation of
the Matsubara frequencies, i.e. [89]

πij(ω) = lim
iωn→ω+i0+

πij(iωn), (5.6)

where 0+ is a positive infinitesimal.

The current operator: The current operator can be written as

Jj =
e
i
[rj,H0] = e

∂H0

∂k j
, (5.7)

where r is the position operator, and only the noninteracting normal state Hamiltonian is present
because the interaction Hamiltonian (which gives rise to the superconducting potential in the mean-
field approximation) commutes with r. Substituting in H0 as given by (2.13) (with the constant
term dropped), we can write this as

Ji =
e
2 ∑

k

(
∂H0,k,α1α2

∂ki
â†

kα1
âkα2 −

∂H0,−k,α2α1

∂ki
â−kα1 â†

−kα2

)
, (5.8)

where the α1 and α2 indices run over the four possible orbital ⊗ spin states. As usual, repeated
indices are summed over. Defining the “electron” and “hole” velocity matrices respectively as

vei
k =

∂H0,k

∂ki
(5.9)

and

vhi
k = −

∂HT
0,−k

∂ki
, (5.10)
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we can write
Ji =

e
2 ∑

k

(
vei

k,α1α2
â†

kα1
âkα2 + vhi

k,α1α2
â−kα1 â†

−kα2

)
. (5.11)

It may appear odd that we differentiate between electron and hole contributions in the context of
H0, but ultimately this result will be applied to a superconducting state.

The imaginary-time correlation function: Substituting the current operator as given by (5.11)
into (5.5), we write the imaginary-time current-current correlator as

πij(τ) = −
e2

4N ∑
k,k′

(
vei

k,α1α2
vej

k′ ,β1β2
〈Tτ â†

kα1
(τ)âkα2(τ)â†

k′β1
(0)âk′β2

(0)〉

+ vei
k,α1α2

vhj
k′ ,β1β2

〈Tτ â†
kα1

(τ)âkα2(τ)â−k′β1
(0)â†

−k′β2
(0)〉

+ vhi
k,α1α2

vej
k′ ,β1β2

〈Tτ â−kα1(τ)â†
−kα2

(τ)â†
k′β1

(0)âk′β2
(0)〉

+ vhi
k,α1α2

vhj
k′ ,β1β2

〈Tτ â−kα1(τ)â†
−kα2

(τ)â−k′β1
(0)â†

−k′β2
(0)〉

)
. (5.12)

When faced with expectation values of multiple creation and annihilation operators, the usual
approach in the context of a single-particle Hamiltonian is to apply Wick’s theorem [88, 90] in order
to express them in terms of products of expectation values of pairs of operators. As an example, the
first term in (5.12) can be written as

− e2

4N ∑
k,k′

vei
k,α1α2

vej
k′ ,β1β2

(
〈Tτ â†

kα1
(τ)âkα2(τ)〉〈Tτ â†

k′β1
(0)âk′β2

(0)〉

+ 〈Tτ âkα2(τ)âk′β2
(0)〉〈Tτ â†

k′β1
(0)â†

kα1
(τ)〉 − 〈Tτ âkα2(τ)â†

k′β1
(0)〉〈Tτ âk′β2

(0)â†
kα1

(τ)〉
)

. (5.13)

The other three terms in (5.12) can be written as analogous expressions, but for now I will focus on
simplifying this term. Note that both operators in the expectation values in the first term of (5.13)
have the same imaginary-time argument, so we can drop the imaginary-time-ordering in order to
obtain

− e2

4N

(
∑
k

vei
k,α1α2

〈â†
kα1

âkα2〉
)(

∑
k′

vej
k′ ,β1β2

〈â†
k′β1

âk′β2
〉
)

.

Now let us consider the vei
k,α1α2

〈â†
kα1

âkα2〉 term. The following argument would also apply to the
other bracket. Note from (2.1) that H0 contains terms of the form H0,k,α1α2 â†

kα1
âkα2 . From the

discussion in Section 2.2.1, we see that 〈â†
kα1

âkα2〉 must have the same parity as H0,k,α1α2 . At the
same time, vei

k,α1α2
is defined in (5.9) in terms of a momentum derivative of H0,k, so will have parity

opposite that of H0,k,α1α2 . For this reason, no matter the parity of the H0,k,α1α2 , the vei
k,α1α2

〈â†
kα1

âkα2〉
term will be odd under inversion, and will therefore vanish under the sum over momentum. This
is easiest to see when inversion acts trivially on the internal degrees of freedom (as is the case in
our model of strontium ruthenate), because inversion simplifies to k→ −k in this case. However,
the same argument applies even if inversion does affect the orbital degree of freedom, as we still
sum over all α1 and α2 values. This result allows us to drop the first term from (5.13).

We can further simplify (5.13) by noting that there are strict restrictions on the momentum
values that lead to non-zero expectation values. Terms like â†

kα1
âk′α2

only appear in (2.1) when
k = k′, so we can conclude that 〈â†

kα1
(τ)âk′α2

(τ′)〉 = 0 unless k = k′. Similarly, (2.2) tells us that
〈â†

kα1
(τ)â†

k′α2
(τ′)〉 = 〈âkα1(τ)âk′α2

(τ′)〉 = 0 unless k = −k′. Applying these results allows us to
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write (5.13) as a sum over only a single momentum value:

(5.13) = − e2

4N ∑
k

(
vei

k,α1α2
vej
−k,β1β2

〈Tτ âkα2(τ)â−kβ2(0)〉〈Tτ â†
−kβ1

(0)â†
kα1

(τ)〉

− vei
k,α1α2

vej
k,β1β2

〈Tτ âkα2(τ)â†
kβ1

(0)〉〈Tτ âkβ2(0)â†
kα1

(τ)〉
)

. (5.14)

The other three terms in (5.12) can be simplified in much the same way, and resulting the expression
for the imaginary-time current-current correlator is

πij(τ) = −
e2

4N ∑
k

(
vei

k,α1α2
vej
−k,β1β2

〈Tτ âkα2(τ)â−kβ2(0)〉〈Tτ â†
−kβ1

(0)â†
kα1

(τ)〉

− vei
k,α1α2

vej
k,β1β2

〈Tτ âkα2(τ)â†
kβ1

(0)〉〈Tτ âkβ2(0)â†
kα1

(τ)〉

+ vei
k,α1α2

vhj
−k,β1β2

〈Tτ âkα2(τ)â†
kβ2

(0)〉〈Tτ âkβ1(0)â†
kα1

(τ)〉

− vei
k,α1α2

vhj
k,β1β2

〈Tτ âkα2(τ)â−kβ1(0)〉〈Tτ â†
−kβ2

(0)â†
kα1

(τ)〉

+ vhi
k,α1α2

vej
−k,β1β2

〈Tτ â†
−kα2

(τ)â−kβ2(0)〉〈Tτ â†
−kβ1

(0)â−kα1(τ)〉

− vhi
k,α1α2

vej
k,β1β2

〈Tτ â†
−kα2

(τ)â†
kβ1

(0)〉〈Tτ âkβ2(0)â−kα1(τ)〉

+ vhi
k,α1α2

vhj
−k,β1β2

〈Tτ â†
−kα2

(τ)â†
kβ2

(0)〉〈Tτ âkβ1(0)â−kα1(τ)〉

− vhi
k,α1α2

vhj
k,β1β2

〈Tτ â†
−kα2

(τ)â−kβ1(0)〉〈Tτ â†
−kβ2

(0)â−kα1(τ)〉
)

. (5.15)

From (5.9) and (5.10) we see that vhi
k,α1α2

= −vei
−k,α2α1

. This allows us to write, for example, the first
term in (5.15) as

vei
k,α1α2

vej
−k,β1β2

〈Tτ â†
kα1

(τ)â†
−kβ1

(0)〉〈Tτ â−kβ2(0)âkα2(τ)〉

= −vhi
k,α1α2

vej
k,β1β2

〈Tτ â†
kα1

(τ)â†
−kβ2

(0)〉〈Tτ â−kβ1(0)âkα2(τ)〉.

Close examination shows us that this is equal to the fourth term in (5.15). In fact, we also find that
the second term is equal to the third, the fifth is equal to the eighth, and the sixth is equal to the
seventh. Putting these together yields

πij(τ) =
e2

2N ∑
k

(
vei

k,α1α2
vej

k,β1β2
〈Tτ âkα2(τ)â†

kβ1
(0)〉〈Tτ âkβ2(0)â†

kα1
(τ)〉

+ vei
k,α1α2

vhj
k,β1β2

〈Tτ âkα2(τ)â−kβ1(0)〉〈Tτ â†
−kβ2

(0)â†
kα1

(τ)〉

+ vhi
k,α1α2

vej
k,β1β2

〈Tτ â†
−kα2

(τ)â†
kβ1

(0)〉〈Tτ âkβ2(0)â−kα1(τ)〉

+ vhi
k,α1α2

vhj
k,β1β2

〈Tτ â†
−kα2

(τ)â−kβ1(0)〉〈Tτ â†
−kβ2

(0)â−kα1(τ)〉
)

. (5.16)
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If we pay careful attention to the indices, we see that each term in (5.16) is suggestive of a trace. It
is not difficult to verify that we can write

πij(τ) =
e2

2N ∑
k

(
Tr
{

vei
k 〈TτΨe

k(τ)Ψ
e†
k (0)〉vej

k 〈TτΨe
k(0)Ψ

e†
k (τ)〉

}
+ Tr

{
vei

k 〈TτΨe
k(τ)Ψ

h†
k (0)〉vhj

k 〈TτΨh
k(0)Ψ

e†
k (τ)〉

}
+ Tr

{
vhi

k 〈TτΨh
k(τ)Ψ

e†
k (0)〉vej

k 〈TτΨe
k(0)Ψ

h†
k (τ)〉

}
+ Tr

{
vhi

k 〈TτΨh
k(τ)Ψ

h†
k (0)〉vhj

k 〈TτΨh
k(0)Ψ

h†
k (τ)〉

})
, (5.17)

where the “electron” and “hole” spinors are given by

Ψe
k =

(
âkx↑ âkx↓ âky↑ âky↓

)T
(5.18)

and

Ψh
k =

(
â†
−kx↑ â†

−kx↓ â†
−ky↑ â†

−ky↓
)T

(5.19)

respectively. Finally, by noting that the full Nambu spinor, (3.1), can be written as Ψk =
(

Ψe
k Ψh

k

)T
,

it is again straightforward to verify that we can write

πij(τ) =
e2

2N ∑
k

Tr

{(
vei

k 0
0 vhi

k

)〈
TτΨk(τ)Ψ

†
k(0)

〉(vej
k 0

0 vhj
k

)〈
TτΨk(0)Ψ

†
k(τ)

〉}
(5.20)

=
e2

2N ∑
k

Tr
{

vi
kGk(τ)v

j
kGk(−τ)

}
, (5.21)

where we have defined the full velocity matrix as

vi
k =

(
vei

k 0
0 vhi

k

)
, (5.22)

and have introduced the imaginary-time Nambu Green’s function [89]

Gk(τ1 − τ2) = −
〈
TτΨk(τ1)Ψ†

k(τ2)
〉

, (5.23)

which is an 8× 8 matrix.

The Matsubara correlation function: Substituting (5.21) into (5.4) yields the following form of
the Matsubara current-current correlator:

πij(iωn) =
e2

2N ∑
k

∫ β

0
dτ eiωnτ Tr

{
vi

kGk(τ)v
j
kGk(−τ)

}
. (5.24)

Our final stage of working will be undertaken with the aim of expressing this conveniently in terms
of Matsubara Green’s functions, Gk,iνm , which will get rid of the integral in (5.24). To proceed, we
require the following identity [88]:

Gk(τ) =
1
β ∑

m
Gk,iνm e−iνmτ , (5.25)
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where νm = (2m + 1)π/β is a fermionic Matsubara frequency, corresponding to the single-particle
excitations described by the BdG Hamiltonian. This gives us

πij(iωn) =
e2

2N ∑
k

1
β2 ∑

l,m

∫ β

0
dτ eiωnτ Tr

{
vi

kGk,iνl
e−iνlτvj

kGk,iνm eiνmτ
}

(5.26)

=
e2

2N ∑
k

1
β2 ∑

l,m
Tr
{

vi
kGk,iνl

vj
kGk,iνm

} ∫ β

0
dτ ei(ωn−νl+νm)τ , (5.27)

where the integral in (5.27) is given by

∫ β

0
dτ ei(ωn−νl+νm)τ = βδνl ,ωn+νm . (5.28)

Substituting this result back into (5.27) yields

πij(iωn) =
e2

2N ∑
k

1
β ∑

m
Tr
{

vi
kGk,iωn+iνm vj

kGk,iνm

}
. (5.29)

The Hall conductivity: The real-frequency current-current correlator, πij(ω), can be calculated
from (5.29) via the analytic continuation (5.6). The Hall conductivity is then given by (5.3) to be

σH(ω) =
ie2

4Nω
lim

iωn→ω+i0+
∑
k

1
β ∑

m
Tr
{[

vx
kGk,iωn+iνm vy

k − vy
kGk,iωn+iνm vx

k

]
Gk,iνm

}
. (5.30)

The only assumption explicitly used in deriving this result was that the normal state has definite
parity, although we must remember that the Kubo formula used as a starting point only applies
in the linear response regime. This expression differs by a factor of one half compared to that
used elsewhere in the literature [22, 26]. This is not an inconsistency, but arises because the BdG
Hamiltonian in those works can be block-diagonalised into two sectors, each of which contribute
equally to the trace in (5.30). Other authors choose to express (5.30) in terms of just one of these
sectors, whereas I write it in terms of the full Nambu Green’s function so that our results will apply
generally, even when the Hamiltonian cannot be block-diagonalised in such a way.

5.2 High-frequency, small-gap approximation

We will return to (5.30) in Chapter 6, but for now we turn our attention to an approximate form of
the Hall conductivity in the high-frequency, small-gap limit. The physical relevance of this limit is
discussed below. In general, the Green’s function that appears in (5.30) can be related to the Green’s
function of the normal state by Dyson’s equation

G = G0 + G0H∆G, (5.31)

where G0 is the Nambu Green’s function corresponding to the normal state (i.e. just the block
diagonal parts of G), and

H∆ ≡
(

0 ∆
∆† 0

)
(5.32)
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is the pairing part of the BdG Hamiltonian. The small-gap limit can be taken by expanding (5.31)
up to second order in H∆, i.e.

G ≈ G0 + G0H∆G0 + G0H∆G0H∆G0, (5.33)

which is equivalent to dropping all terms higher than second order in the gap magnitude (although
it does not necessarily mean that all second-order terms are kept). Similarly, we can take the
high-frequency limit by dropping all the remaining terms with a frequency dependence of lower
order than ω−2. This process is performed by Brydon et al. in [27], where they obtain the following
approximation for the Matsubara current-current correlator in the high-frequency, small-gap limit:

πxy(iωn) ≈
e2

2iωn

1
N ∑

k

1
β ∑

m
Tr
{
(vx

kvy
k − vy

kvx
k)G0,k,iνm H∆,kG0,k,iνm H∆,kG0,k,iνm

}
. (5.34)

Technically, this expression differs by a factor of one half from that of Brydon et al., for the same
reason as for (5.30). Within this limit we also find πxy(iωn) = −πyx(iωn), so (5.3) yields the
following expression for the Hall conductivity

σH(ω) ≈ ie2

2ω2
1
N ∑

k

1
β ∑

m
Tr
{
(vx

kvy
k − vy

kvx
k)G0,k,iνm H∆,kG0,k,iνm H∆,kG0,k,iνm

}
, (5.35)

where the i0+ part of the analytic continuation has been dropped because it will never contribute
unless ω = 0, which falls outside the high-frequency limit.

The remainder of this section is dedicated to gaining a better understanding of the velocity term
and the Green’s function that appear in (5.35). This involves introducing some assumptions, so the
results we obtain will not be completely general, although they will still apply to a large class of
systems, including our model of strontium ruthenate.

The velocity term: To begin, it is notationally convenient to define the following “wedge product”:

[a ∧ b] = axby − aybx. (5.36)

In particular, we have

[ve
k ∧ ve

k] = vex
k vey

k − vey
k vex

k (5.37)

and

[vh
k ∧ vh

k] = vhx
k vhy

k − vhy
k vhx

k . (5.38)

We can see how these two expressions are related by noting that

[vh ∧ vh] =
∂HT

0,−k

∂kx

∂HT
0,−k

∂ky
−

∂HT
0,−k

∂ky

∂HT
0,−k

∂kx

= UT
I

(
∂HT

0,k

∂kx

∂HT
0,k

∂ky
−

∂HT
0,k

∂ky

∂HT
0,k

∂kx

)
U∗I

= UT
I

(
∂H0,k

∂ky

∂H0,k

∂kx
− ∂H0,k

∂kx

∂H0,k

∂ky

)T
U∗I = −UT

I [v
e
k ∧ ve

k]
TU∗I , (5.39)
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where we assumed that H0 is symmetric under inversion, and therefore UT
I HT

0,kU∗I = HT
0,−k, which

can be seen by taking the transpose of (2.27). We can therefore write

vx
kvy

k − vy
kvx

k =

(
vex

k vey
k − vey

k vex
k 0

0 vhx
k vhy

k − vhy
k vhx

k

)
=

(
[ve

k ∧ ve
k] 0

0 −UT
I [v

e
k ∧ ve

k]
TU∗I

)
, (5.40)

which will make working with (5.35) easier.

The Green’s function: The normal state Green’s function can be written in Nambu space as [89]

G0,k,iνm =

(
Ge

0,k,iνm
0

0 Gh
0,k,iωn

)
=

[
iνm18 −

(
H0,k 0

0 −HT
0,−k

)]−1

, (5.41)

where Ge
0,k,iνm

and Gh
0,k,iνm

are the “electron” and “hole” parts of the Green’s function respectively.
A block diagonal matrix can be inverted block by block, so these are decoupled, and we can write

Ge
0,k,iνm

= [iνm14 − H0,k]
−1, (5.42)

Gh
0,k,iνm

= [iνm14 + HT
0,−k]

−1. (5.43)

An alternative way of writing (5.42) is as a sum over projection operators:

Ge
0,k,iνm

= ∑
s,n

Pk,s,n

iνm − Ek,s,n
= ∑

s,n

|k, s, n〉 〈k, s, n|
iνm − Ek,s,n

, (5.44)

where I have labelled the eigenstates of H0,k with momentum, pseudospin, and band indices, as
outlined in Section 4.1. Assuming that we can write H0,k as in (4.7), the pseudospin degeneracy of
the normal state means that there are only two energy bands, and we can write [32]

Ge
0,k,iνm

= ∑
s

Pk,s,+

iνm − Ek+
+
Pk,s,−

iνm − Ek−
=

1+ H̃0,k

2(iνm − Ek+)
+

1− H̃0,k

2(iνm − Ek−)
, (5.45)

where E+ is the energy of the “upper” band, E− is the energy of the “lower” band, H̃0 is defined in
(4.8), and the projection operators have been given by (4.12). We can rearrange (5.45) slightly in
order to decompose Ge

0,k,iνm
in terms of H̃0 and the identity matrix as follows:

Ge
0,k,iνm

=
1
2

[
(iνm − Ek+)

−1(1+ H̃0,k)
]
+

1
2

[
(iνm − Ek−)

−1(1− H̃0,k)
]

=
1
2

[
(iνm − Ek+)

−1 + (iνm − Ek−)
−1
]
1+

1
2

[
(iνm − Ek−)

−1 − (iνm − Ek−)
−1
]

H̃0,k.

By generalising this result, we can also show that the hole-type Green’s function is given by

Gh
0,k,iνm

=
1+ H̃T

0,−k

2(iνm + Ek+)
+

1− H̃T
0,−k

2(iνm + Ek−)

=
1
2

[
(iνm + Ek+)

−1 + (iνm + Ek−)
−1
]
1+

1
2

[
(iνm + Ek−)

−1 − (iνm + Ek−)
−1
]

H̃T
0,−k.

For convenience, we will abbreviate these expressions by writing

Ge
0,k,iνm

= ak,m1+ bk,m H̃0,k, (5.46)

Gh
0,k,iνm

= ck,m1+ dk,m H̃T
0,−k, (5.47)
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where

ak,m =
1
2

[
(iνm − Ek,+)

−1 + (iνm − Ek,−)
−1
]

, (5.48)

bk,m =
1
2

[
(iνm − Ek,+)

−1 − (iνm − Ek,−)
−1
]

, (5.49)

ck,m =
1
2

[
(iνm + Ek,+)

−1 + (iνm + Ek,−)
−1
]

, (5.50)

dk,m =
1
2

[
(iνm + Ek,+)

−1 − (iνm + Ek,−)
−1
]

. (5.51)

5.3 Time-reversal-odd bilinears

As discussed in Chapter 1, a necessary condition for a non-zero Hall conductivity is broken time-
reversal symmetry. In fact, the whole reason we are interested in the Hall conductivity is in the
context of detecting TRSB via the polar Kerr effect. However, in addition to TRSB, there are
additional conditions that must be met in order for a given system to exhibit a non-zero Hall
conductivity, and identifying these in various models has been the focus of much theoretical work
[22, 26, 27, 49, 50, 91]. For example, in chiral superconductors time-reversal is broken in the
relative momentum coordinate of the Cooper pair, so it is necessary for this to be coupled to the
experimentally accessible centre-of-mass momentum in order for an intrinsic Hall conductivity to
be present. This is achieved, for example, in multiband superconductors (refer to the discussion in
Section 1.2.2), which we are considering here. As an additional example, Taylor and Kallin have
used a multiband model of strontium ruthenate to show that a further necessary condition is the
presence of interband pairing [26]. The exact assumptions under which these various results apply
is not always clear, especially when they are derived for a specific model. For this reason, there is
still some debate over precisely which conditions are required.

When examining the anomalous Hall conductivity on a simplified model of the Honeycomb
lattice, Brydon et al. argued for the introduction of some time-reversal symmetry breaking combi-
nation of products of ∆̃k and ∆̃†

k [27]. As well as necessarily breaking time-reversal, the resulting
bilinear would be independent of the overall phase of ∆̃, which is not experimentally observable.
The simplest such bilinear is ∆̃k∆̃†

k, and as noted in Section 3.2, ∆̃k and ∆̃†
k are time-reversed coun-

terparts. For this reason, Brydon et al. motivated the following time-reversal-odd bilinear (TROB)
[27]:

∆̃k∆̃†
k − ∆̃†

k∆̃k, (5.52)

which selects just the time-reversal-odd part of ∆̃k∆̃†
k. The TROB defined in (5.52) is not necessarily

unique; any function of the form ∆̃k fk∆̃k, where fk is time-reversal symmetric, would also be odd
under time-reversal and independent of the overall phase of ∆̃. In this section I follow this line of
reasoning by further investigating the role of TROBs in determining the presence of a non-vanishing
intrinsic Hall conductivity more generally.

I will deal with the high-frequency, small-gap approximation introduced in the previous section,
as this leads to more analytically tractable expressions to work with. At the end I will discuss the
applicability of my result away from this limit. To begin, substituting (5.32), (5.40), and (5.41) into
(5.35), we find the Hall conductivity in this limit can be written as

σH(ω) ≈ ie2

2ω2
1
N ∑

k

1
β ∑

m
Tr
{
[ve∧ ve] Ge

0 ∆ Gh
0 ∆† Ge

0 −UT
I [v

e∧ ve]TU∗I Gh
0 ∆† Ge

0 ∆ Gh
0

}
, (5.53)
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where I have dropped explicit momentum and frequency indices for convenience. The main part of
this expression is the trace, which can be written as

Tr
{
[ve∧ ve] Ge

0 ∆̃UT Gh
0 U†

T∆̃† Ge
0

}
− Tr

{
UT

I [v
e∧ ve]TU∗I Gh

0 UT∆̃† Ge
0 ∆̃U†

T Gh
0

}
,

where I have used ∆ = ∆̃UT from (2.31), and UT = −U†
T from (3.27). By inserting U†

TUT = 1 and
taking advantage of the cyclic nature of the trace, we can write this as

Tr
{
[ve∧ ve] Ge

0 ∆̃ UTGh
0 U†

T ∆̃† Ge
0

}
︸ ︷︷ ︸

(∗)

−Tr
{

U†
TUT

I [v
e∧ ve]TU∗I UT U†

TGh
0 UT ∆̃† Ge

0 ∆̃ U†
TGh

0 UT

}
︸ ︷︷ ︸

(†)

.

This expression can be simplified in two useful ways:

1. Firstly, inversion commutes with time-reversal, so we can use (2.35) to write

U†
TUT

I [v
e∧ ve]TU∗I UT = U†

I U†
T [v

e∧ ve]TUTUI .

We then have

U†
I U†

T [v
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I U†
T
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∂ky

∂HT
0,k
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−

∂HT
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∂kx

∂HT
0,k

∂ky

)
UTUI
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I U†
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(
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∂ky

∂H∗0,k

∂kx
−

∂H∗0,k

∂kx

∂H∗0,k

∂ky

)
UTUI ,

where HT
0 = H∗0 arises from the fact that H0 is Hermitian. We recognise U†

T H∗0,kUT from
(2.29) as the result of applying time-reversal to H0,−k. Assuming H0 is symmetric under
time-reversal, we see that

U†
I U†

T [v
e∧ ve]TUTUI = U†

I

(
∂H0,−k

∂ky

∂H0,−k

∂kx
− ∂H0,−k

∂kx

∂H0,−k

∂ky

)
UI .

Similarly, we recognise U†
I H0,−kUI from (2.27) as the result of applying inversion to H0,k.

Assuming H0 is symmetric under inversion we can conclude that

U†
I U†

T [v
e∧ ve]TUTUI =

(
∂H0,k

∂ky

∂H0,k

∂kx
− ∂H0,k

∂kx

∂H0,k

∂ky

)
= −[ve∧ ve]. (5.54)

2. Secondly, using Gh
0 as defined in (5.47), we have

U†
TGh

0 UT = U†
T(ck,m1+ dk,mH̃T

0,−k)UT = ck,m1+ dk,mU†
T H̃T

0,−kUT ,

where we can again use (2.29), the assumption that the normal state is symmetric under
time-reversal, and the Hermiticity of H0 to conclude that

U†
TGh

0 UT = ck,m1+ dk,m H̃0,k. (5.55)
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Using these results we can write

(∗) = Tr
{
[ve∧ ve] (a1+ bH̃0,k) ∆̃ (c1+ dH̃0,k) ∆̃† (a1+ bH̃0,k)

}
, (5.56)

(†) = −Tr
{
[ve∧ ve] (c1+ dH̃0,k) ∆̃† (a1+ bH̃0,k) ∆̃ (c1+ dH̃0,k)

}
, (5.57)

where I have dropped the explicit indices on the a, b, c, and d coefficients for convenience. The
advantage these expressions have over the trace in (5.53) is that both (∗) and (†) are now expressed
in terms of [ve∧ ve] and H̃0,k, rather than mixing in [ve∧ ve]T and H̃T

0,−k as well. By decomposing
these expression further, we obtain

(∗) = a2c Tr
{
[ve∧ ve]∆̃∆̃†

}
+ a2d Tr

{
[ve∧ ve]∆̃H̃0,k∆̃†

}
+b2c Tr

{
[ve∧ ve]H̃0,k∆̃∆̃† H̃0,k

}
+ b2d Tr

{
[ve∧ ve]H̃0,k∆̃H̃0,k∆̃†H̃0,k

}
+abc Tr
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}
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}
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}
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{
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}
,

and

(†) = −ac2 Tr
{
[ve∧ ve]∆̃†∆̃

}
− bc2 Tr

{
[ve∧ ve]∆̃†H̃0,k∆̃

}
−ad2 Tr

{
[ve∧ ve]H̃0,k∆̃†∆̃H̃0,k

}
− bd2 Tr

{
[ve∧ ve]H̃0,k∆̃†H̃0,k∆̃H̃0,k

}
−acd Tr

{
[ve∧ ve]∆̃†∆̃H̃0,k

}
− bcd Tr

{
[ve∧ ve]∆̃† H̃0,k∆̃H̃0,k

}
−acd Tr

{
[ve∧ ve]H̃0,k∆̃†∆̃

}
− bcd Tr

{
[ve∧ ve]H̃0,k∆̃†H̃0,k∆̃

}
.

Now, these two expressions are very similar, but differ in two crucial ways. Firstly, the order of ∆̃
and ∆̃† are reversed, which is promisingly reminiscent of the TROB defined in (5.52). Secondly, a
and c are swapped, and b and d are swapped. Examination of (5.48)–(5.51) show us that a → −c
and b → −d when νm → −νm, so let us consider the sum over m that appears in (5.53). As an
example, the first term from each of (∗) and (†) contribute

∑
m

a2
mcm Tr

{
[ve∧ ve]∆̃∆̃†

}
+ ∑

m
amc2

m Tr
{
[ve∧ ve]∆̃†∆̃

}
to the ∑m Tr{· · ·} = ∑m[(∗)− (†)] part of (5.53). Since the sum over m runs from −∞ to ∞ we can
take νm → −νm in the second term and it will not affect our result. This gives us

∑
m

a2
mcm Tr

{
[ve∧ ve](∆̃∆̃† − ∆̃†∆̃)

}
,

which is promising as it contains the TROB defined in (5.52). If we repeat this process for the second
term in each of (∗) and (†) we obtain the following contribution:

∑
m

a2
mdm Tr

{
[ve∧ ve](∆̃H̃0∆̃† − ∆̃†H̃0∆̃)

}
, (5.58)

where H̃0 is assumed to be evaluated at momentum k for the rest of this chapter. This expression
does not contain the TROB defined in (5.52), but note that ∆̃H̃0∆̃† − ∆̃†H̃0∆̃ is still a time-reversal-
odd bilinear. If we repeat this process for all the terms in (∗) and (†) we obtain the resulting
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expression for the Hall conductivity:

σH(ω) ≈ ie2

2ω2
1
N ∑

k

1
β ∑

m
(‡), (5.59)

where

(‡) = a2c Tr{[ve∧ ve] TROB1}+ a2d Tr{[ve∧ ve] TROB2}
+ b2c Tr{H̃0[ve∧ ve]H̃0 TROB1}+ b2d Tr{H̃0[ve∧ ve]H̃0 TROB2}

+ abc Tr{{H̃0, [ve∧ ve]} TROB1}+ abd Tr{{H̃0, [ve∧ ve]} TROB2}, (5.60)

and

TROB1 ≡ ∆̃∆̃† − ∆̃†∆̃, (5.61)

TROB2 ≡ ∆̃H̃0∆̃† − ∆̃† H̃0∆̃. (5.62)

This result is exact in the high-frequency, small-gap limit, in the sense that (5.59) is equal to (5.35),
which shows that these TROBs play a central role in determining the Hall conductivity. However,
the main advantage of this result is not that we have restated (5.35), but rather that the TROBs
themselves provide a quick test as to whether a given model of a superconductor might have a
non-vanishing intrinsic Hall conductivity. If both TROBs are vanishing there will be no intrinsic
Hall conductivity, so the existence of TROB1 6= 0 or TROB2 6= 0 is a necessary condition for a
non-zero intrinsic Hall conductivity. This is a useful result because these TROBs are straightforward
to calculate, which means that this requirement is easy to test for. On the other hand, it is important
to note that this requirement is not a sufficient condition for a non-zero intrinsic Hall conductivity as
it is possible for (5.59) to be vanishing even if one of the TROBs is non-zero, although this outcome
probably requires fine-tuning.

Another useful feature of these TROBs is that the requirement for at least one of them to be
non-zero implies not only that time-reversal is broken, but also that the TRSB can be communicated
to the centre-of-mass coordinate. This can be seen by noting that in a single-band system both ∆̃
and H̃0 are written as the linear combination of Pauli matrices, in which case TROB1 = TROB2 = 0.
This is to say that the TROBs require a multiband system in order to be non-vanishing, in which
case we already know that the relative and centre-of-mass momentum coordinates are coupled.
This means that our new condition for a non-vanishing Hall conductivity is at least as specific as
these two conditions combined. On the other hand, it is not obvious if a non-vanishing TROB also
implies the presence of interband pairing, in alignment with the condition identified in [26]. An in
depth discussion about the relationship between these two conditions is presented in Section 5.3.2.

It may appear as though there is some kind of imbalance between electrons and holes in (5.59).
Specifically, ve appears while vh does not, and the a and b coefficients occur more often than c and
d. This imbalance is not actually an issue, and can be easily explained. First of all, ve appears
exclusively because (5.39) was used to write [vh∧ vh] in terms of [ve∧ ve]. We could equally easily
have chosen to invert this in order to write (5.59) exclusively in terms of vh. Similarly, the over-
emphasis of a and b arises from taking νm → −νm in the (†) terms when summing over m. If we
had instead chosen to take νm → −νm in the (∗) terms, c and d would be emphasised instead.
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5.3.1 Applicability of the TROB result

There are a few results that were assumed in the derivation that yielded (5.59) and the results
pertaining to the TROBs that come along with it. All of these apply to our model of strontium
ruthenate, but it is worth explicitly stating them, and discussing how generally they apply. To begin,
it goes without saying that (5.59) only applies to systems that can be described by the mean-field
superconducting Hamiltonian introduced in Section 2.1, and which have two internal degrees
of freedom, each with two possible states. We have also used the fact that the Hamiltonian is
Hermitian and obeys the fermionic exchange antisymmetry, and that time-reversal obeys Θ2 = −1,
each of which are physically required to be true. When it comes to calculating the Hall conductivity
we have imposed the following assumptions:

1. The intensity of the incoming light is restricted to the linear response regime. This assumption was
introduced right from the beginning, when we wrote the Hall conductivity in terms of the
current-current correlator in (5.2). As was noted in Section 1.2, this regime is applicable to
experiments [42], and, in any case, can be obtained by reducing the intensity of the beam.

2. Measurements are taken in the high-frequency, small-gap limit. This limit was introduced in Section
5.2, and applies to all results since. The “high-frequency” aspect is valid in the context of
many experimental endeavours, and specifically to strontium ruthenate, as we will see in
the next chapter. In any case, it can be obtained by using higher frequency light. The “small-
gap” aspect can be obtained by taking measurements very close to the critical temperature,
although it is unclear in general what range of temperatures it is valid over. The TROBs
themselves still have some utility away from these limits, which is discussed in detail below.

3. The normal state is symmetric under time-reversal. This assumption was used explicitly to obtain
(5.39), (5.54), and (5.55), and implicitly when we used the pseudospin degeneracy to write
the Green’s function as (5.45). As has been discussed previously, it is almost universally true
that the normal state will be time-reversal symmetric. If the normal state were not symmetric
under time-reversal, we might expect an anomalous Hall conductivity above the critical
temperature. This could occur if the normal state was ferromagnetic for example, but this
falls outside the scope ofH0 as defined as a single-particle operator in (2.1).

4. The normal state has an inversion centre, and is symmetric under inversion. Similarly to the
previous assumption, these are used explicitly to obtain (5.39) and (5.54), and implicitly in
(5.45). These assumptions are somewhat restrictive because there are many superconducting
systems which do not have an inversion centre, such as LaNiC2 [92]. Our results do not apply
to such systems. However, in crystal lattices that do have an inversion centre, the “normal
state” does tend to be symmetric under inversion.

Application away from the high-frequency, small-gap limit

Although (5.59) only applies in the high-frequency, small-gap limit, the TROBs still have some
utility away from this regime. To understand why, we begin by recalling that the small-gap limit
is taken by dropping all terms that are of higher order than ∼ |∆|2. If we moved away from this
limit (by decreasing the temperature), we would be required to include higher order terms in (5.33),
although it would will leave the small-gap contribution unaffected. Although not impossible, it is
unlikely that higher-order corrections would cancel out the small-gap contribution. For this reason,
we can say that if either TROB is non-vanishing there will probably by a non-zero intrinsic Hall
conductivity, even away from the small-gap limit. Unfortunately, the converse statement is not
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true: if both TROBs are vanishing we cannot necessarily say that this implies a vanishing Hall
conductivity away from the small-gap limit.

When we move away from the high-frequency limit a similar argument applies. If either TROB
is non-zero it is likely that there will be a non-vanishing Hall conductivity, even away from the high-
frequency limit, because it is unlikely that corrections to (5.59) will cancel out the high-frequency
contribution. Further, unlike the small-gap approximation, the converse statement also holds: if
both TROBs are vanishing there is probably no Hall conductivity at any frequency. To understand
why this is the case we require the following two results [93, 94]:

σH,high-ω(ω) ∝
〈
[Jx,Jy]

〉
, (5.63)

and ∫ ∞

−∞
ω Im{σH(ω)}dω ∝

〈
[Jx,Jy]

〉
. (5.64)

From these we can conclude that

σH,high−ω(ω) ∝
∫ ∞

−∞
ω Im{σH(ω)}dω. (5.65)

It is unlikely that this integral over all frequencies will vanish unless the Hall conductivity is
vanishing at all frequencies. If both TROBs are vanishing then we know that the Hall conductivity
is equal to zero at high frequencies, and is therefore probably vanishing at all frequencies.

None of the arguments put forward in this section have been water-tight as they have all
relied on balances of likelihoods. The key point is that just because (5.59) only applies in the high-
frequency, small-gap limit does not mean that the TROBs I have identified have no use applicability
outside of this regime.

5.3.2 Contribution from intraband pairing

As mentioned in Section 5.3, one of the necessary conditions for a non-zero Hall conductivity
identified by Taylor and Kallin was the presence of interband pairing. This is a bit of a cause for
concern because there is nothing in (5.59) that seems to indicate that intraband pairing does not
contribute to the Hall conductivity. This apparent contradiction can be understood by realising that,
while (5.59) applies rather generally, the results of Taylor and Kallin are specific to a certain model,
which just so happens to be restricted in such a way that intraband pairing does not contribute to
the intrinsic Hall conductivity. If we include just the Eu pairing potentials from Table 4.2, the model
of strontium ruthenate introduced in Chapters 2 and 3 of this thesis turns out to be a generalised
version of Taylor and Kallin’s (the model in [26] takes h23 = 0 and ∆22 = 0). In this section I will
show why intraband pairing does not contribute within the Eu pairing states in our model, which
will by extension explain Taylor and Kallin’s result.

I begin by explicitly writing the traces in (5.59) in terms of the eigenstates of the normal state
Hamiltonian. As discussed in Section 4.1, these are |k, s,±〉, where ± indicates the two possible
energy bands, and s is pseudospin. As an example, let us consider the first term in (5.59):

Tr{[ve∧ ve] TROB1} = ∑
σ,±
〈σ,±| [ve∧ ve] TROB1 |σ,±〉 , (5.66)

where the momentum degree of freedom is not included in the trace as the momentum states are
explicitly summed over in (5.59). At a given k point, the identity is 1 = ∑s,± |s,±〉 〈s,±|, which
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can be inserted to obtain

Tr{[ve∧ ve] TROB1} = ∑
s,±

∑
s′ ,±′
〈s,±| [ve∧ ve]

∣∣s′,±′〉 〈s′,±′∣∣TROB1 |s,±〉 . (5.67)

As a second example, we can apply the same process to the second term in (5.59) in order to obtain

Tr{H̃0[ve∧ ve]H̃0 TROB1} = ∑
s,±

∑
s′ ,±′
〈s,±| H̃0[ve∧ ve]H̃0

∣∣s′,±′〉 〈s′,±′∣∣TROB1 |s,±〉 . (5.68)

This expression differs from (5.67) by the presence of H̃0. Applying (4.11) we have

Tr{H̃0[ve∧ ve]H̃0 TROB1} = ∑
s,±

∑
s′ ,±′
±±′ 〈s,±| [ve∧ ve]

∣∣s′,±′〉 〈s′,±′∣∣TROB1 |s,±〉 . (5.69)

Applying the same process to each term in (5.59), we obtain the following result:

(‡) = ∑
s,±

∑
s′ ,±′

[
a2c Tr1,±±′ ±abc Tr1,±±′ ±′abc Tr1,±±′ ±±′ b2c Tr1,±±′

+ a2d Tr2,±±′ ±abd Tr2,±±′ ±′abd Tr2,±±′ ±±′ b2d Tr2,±±′
]
, (5.70)

where I have introduced the shorthand notation

Tri,±±′ ≡ 〈s,±| [ve∧ ve]
∣∣s′,±′〉 〈s′,±′∣∣TROBi |s,±〉 , (5.71)

which has allowed us to express (5.70) rather compactly. We can explicitly carry out the sum over
the band index in order to write

(‡) = ∑
s,s′

[
a2c(Tr1,++ +Tr1,+−+Tr1,−+ +Tr1,−−) + a2d(Tr2,++ +Tr2,+−+Tr2,−+ +Tr2,−−)

+ abc(Tr1,++ +Tr1,+−−Tr1,−+−Tr1,−−) + abd(Tr2,++ +Tr2,+−−Tr2,−+−Tr2,−−)

+ abc(Tr1,++−Tr1,+−+Tr1,−+−Tr1,−−) + abd(Tr2,++−Tr2,+−+Tr2,−+−Tr2,−−)

+ b2c(Tr1,++−Tr1,+−−Tr1,−+ +Tr1,−−) + b2d(Tr2,++−Tr2,+−−Tr2,−+ +Tr2,−−)
]
. (5.72)

Regrouping these terms in a convenient manner yields

(‡) = ∑
s,s′

[
(a + b)2c Tr1,++ +(a2 − b2)c(Tr1,+−+Tr1,−+) + (a− b)2c Tr1,−−

+ (a + b)2d Tr2,++ +(a2 − b2)d(Tr2,+−+Tr1,−+) + (a− b)2d Tr2,−−
]
. (5.73)

At this point we refer to (5.48)–(5.51) in order to write

a = ge
+ + ge

−, b = ge
+ − ge

−, c = gh
+ + gh

−, d = gh
+ − gh

−, (5.74)

where

ge
k,m,± =

1
2

1
iνm − Ek±

, gh
k,m,± =

1
2

1
iνm + Ek±

, (5.75)
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although I will drop the explicit momentum and frequency indices for convenience. Substituting
these into (5.73) yields

(‡) = 4 ∑
s,s′

(ge
+)

2(gh
+ + gh

−)Tr1,++ +(ge
+)

2(gh
+ − gh

−)Tr2,++

+ (ge
+ge
−)(gh

+ + gh
−)(Tr1,+−+Tr1,−+) + (ge

+ge
−)(gh

+ − gh
−)(Tr2,+−+Tr2,−+)

+ (ge
−)

2(gh
+ + gh

−)Tr1,−−+(ge
−)

2(gh
+ − gh

−)Tr2,−−]. (5.76)

This change in notation is useful because the ± index on the g coefficients in each term indicates
which band the Green’s functions that appear in that term belong to. Terms involving only ge

+ and
gh
+, or only ge

− and gh
−, can only involve intraband pairing, while any expression that involves a

mixture of g+ and g− terms must involve interband pairing. We can immediately see that Tri,+−
and Tri,−+ always correspond to interband pairing, while the Tri,++ and Tri,−− terms can involve
intraband contributions. The purely intraband part of (5.76) is therefore given by

(‡)intra = 4 ∑
s,s′

[
(ge

+)
2gh

+(Tr1,++ +Tr2,++) + (ge
−)

2gh
−(Tr1,−−−Tr2,−−)

]
(5.77)

= 4 ∑
s,s′

∑
±
(ge
±)

2gh
±(Tr1,±±±Tr2,±±). (5.78)

So far this derivation has been general to systems subject to the assumptions outlined in Section
5.3.1. We know that, in general, pseudospin is a degree of freedom that transforms in the same way
as spin under inversion and time-reversal, and it turns out that within our model, i.e. with H0 as
given by (3.38), the pseudospin is actually just the spin, so the eigenstates of H0 are |k, σ,±〉. To see
why this is the case, note that (3.38) is purely diagonal in spin. It therefore commutes with the spin
operator Sz = η0 ⊗ σ3, and we can conclude that they share a common set of eigenstates, i.e. the
spin states |σ〉. I will now show that in this case the intraband contribution to the Hall conductivity
is vanishing (at least in the high-frequency, small-gap limit). To approach this, let us see how we
can simplify the

Tri,±± = ∑
σ,σ′
〈σ,±| [ve∧ ve]

∣∣σ′,±〉 〈σ′,±∣∣TROBi |σ,±〉 (5.79)

terms that appear in (5.78). (5.79) consists of four terms (one for each value of σ and σ′), but we
note that since H0 is diagonal in spin, so too is [ve∧ ve]. This implies that the spin off-diagonal
terms must vanish, and hence we have

Tri,±± = ∑
σ

〈σ,±| [ve∧ ve] |σ,±〉 〈σ,±|TROBi |σ,±〉 , (5.80)

and therefore

Tr1,±±±Tr2,±± = ∑
σ

〈σ,±| [ve∧ ve] |σ,±〉 〈σ,±|TROB1 ± TROB2 |σ,±〉 . (5.81)

To understand why the intraband contribution vanishes, it will suffice to show that

〈σ,±|TROB1 ± TROB2 |σ,±〉 (5.82)

is equal to zero. Of course, this is not the only way the intraband contribution could vanish (for
example, we could conceive of a situation where contributions from both spins were required in
order for (5.81) to vanish), but we can see that if (5.82) vanishes, then so too must (5.78). In order to
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achieve this we use the defining TROB expressions (5.61) and (5.62) to write

TROB1 ± TROB2 = ∆̃(1± H̃0)∆̃† − ∆̃†(1± H̃0)∆̃ = 2
(

∆̃P±∆̃† − ∆̃†P±∆̃
)

, (5.83)

where we have used the band projection operators as defined in (4.12). When substituted into
(5.82), we obtain

2 〈σ,±|
[
∆̃P±∆̃† − ∆̃†P±∆̃

]
|σ,±〉 .

Inserting the identity in the form 1 = ∑σ (|σ,+〉 〈σ,+|+ |σ,−〉 〈σ,−|), we can write

2 ∑
σ′

[
〈σ,±|

[
∆̃P±

∣∣σ′,+〉 〈σ′,+∣∣ ∆̃† − ∆̃†P±
∣∣σ′,+〉 〈σ′,+∣∣ ∆̃

]
|σ,±〉

+
〈
σ′,±

∣∣ [∆̃P± ∣∣σ′,−〉 〈σ,−| ∆̃† − ∆̃†P±
∣∣σ′,+〉 〈σ′,+∣∣ ∆̃

]
|σ,±〉

]
.

By acting the projection operators on their neighbouring kets, we see that the first line vanishes
when |±〉 → |−〉, while the second line vanishes when |±〉 → |+〉, so in either case we have

4 ∑
σ′

[
〈σ,±| ∆̃

∣∣σ′,±〉 〈σ′,±∣∣ ∆̃† |σ,±〉 − 〈σ,±| ∆̃† ∣∣σ′,±〉 〈σ′,±∣∣ ∆̃ |σ,±〉
]

.

In general this could be non-zero, but we can see that it vanishes in particular if ∆̃ is diagonal
in spin. In conclusion, there is no intraband contribution to the Hall conductivity when both H0

and ∆̃ are diagonal in spin, as is the case for pairing within the Eu irreps in Table 4.2. Of course,
this is not to say that this is the only case in which intraband pairing will not contribute, but it
explains the conclusions of Taylor and Kallin. It is worth noting that this result could not be derived
from the TROBs alone, but instead required the full expression for the Hall conductivity in the
high-frequency, small-gap limit, (5.59).

Summary

The main result of this chapter was the identification of the two time-reversal-odd bilinears, (5.61)
and (5.62), and their relationship to the presence of an intrinsic anomalous Hall conductivity in a
given model. A necessary condition for a non-vanishing Hall conductivity in the high-frequency,
small-gap limit is that these two TROBs are non-zero. Away from the high-frequency, small-
gap limit this necessary condition no longer holds, as correction terms may contribute to the
Hall conductivity even if (5.59) is vanishing. However, we can still say that if both TROBs are
non-vanishing there will probably be a non-zero Hall conductivity at any given frequency and
temperature. In the next chapter I will apply these results to our model of strontium ruthenate.
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Chapter 6

Hall conductivity in strontium ruthenate

In Chapters 2–4 we constructed a simple model of superconductivity in strontium ruthenate,
eventually restricting ourselves to 22 pairing channels: those belonging to the B1g, B2g, A1u, A2u,
B1u, B2u, and Eu irreps listed in Table 4.2. This model was put aside in Chapter 5, so as to consider
the Hall conductivity in a general class of systems. In this chapter we return to our model in order
to consider the Hall conductivity in strontium ruthenate in particular. The focus of this chapter
will be on pairing terms belonging to the Eu irreps. I did also consider the superposition of pairing
potentials from different one-dimensional irreps, but I was unable to stabilise these within our
model. This is discussed in more detail in Section 6.2.2.

A summary of the model containing just the Eu channels is provided in Section 6.1. In particular,
I present the two TROBs introduced in Chapter 5, and use these to gain insight into which states
might exhibit a non-zero Hall conductivity. I motivate two specific models, which will be examined
in detail in this chapter. In Section 6.2 I calculate the amplitudes of the pairing potentials as a
function of temperature, by minimising the free energy of each model. These are then used in
Section 6.3 to calculate the Hall conductivity as a function of temperature and frequency within
each model. Both the exact and the high-frequency, small-gap results of Chapter 5 are examined,
and, in addition, I introduce a form of the Hall conductivity in the high-frequency limit alone.

6.1 Eu pairing states

As mentioned above, I choose to limit the pairing in our model to the Eu terms from Table 4.2. The
justification for this choice is that it is natural for pairing terms from the same multi-dimensional
irrep to form chiral states, whereas the superposition of terms from different irreps requires fine-
tuning (refer to Section 3.4). A general superconducting state consisting of these terms has

H0,k = hk,00η0 ⊗ σ0 + hk,23η2 ⊗ σ3 + hk,30η3 ⊗ σ0 + hk,10η1 ⊗ σ0, (6.1)

∆̃k = ∆k,01η0 ⊗ σ3 + ∆k,11η1 ⊗ σ3 + ∆k,22η2 ⊗ σ0 + ∆k,31η3 ⊗ σ3, (6.2)

where the hk,ησ coefficients are given by (3.40)–(3.43) to be

hk,00 = −t1(cos(kx) + cos
(
ky
)
)− µ, (6.3)

hk,23 = λ, (6.4)

hk,30 = −t2(cos(kx)− cos
(
ky
)
), (6.5)

hk,10 = 2t3 sin(kx) sin
(
ky
)
, (6.6)
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with t1 defining the energy scale, such that we can take t2 = 0.8t1, t3 = 0.1t1, µ = t1, and λ = 0.4t1.
The chiral ∆k,ησ coefficients are given in (3.53)–(3.56) as

∆k,01 = ∆0,01(sin kx + i sin ky), (6.7)

∆k,11 = ∆0,11(sin ky + i sin kx), (6.8)

∆k,22 = ∆0,22(sin kx + i sin ky), (6.9)

∆k,31 = ∆0,31(sin kx − i sin ky), (6.10)

where the amplitudes ∆0,ν are complex numbers.

6.1.1 Spin sectors

Having restricted ourselves to these pairing terms, it turns out that we can write our Hamiltonian
in a convenient way that will save us some computational effort below. Because H0 and ∆̃ are
purely diagonal in spin (and therefore ∆ is purely off-diagonal), we are able to decompose (2.15) in
terms of two smaller spinors:

H = H↑ +H↓ = 1
2 ∑

k
Ψ↑†k H↑kΨ↑k +

1
2 ∑

k
Ψ↓†k H↓kΨ↓k, (6.11)

where

Ψ↑k =
(

âkx↑ âky↑ â†
−kx↓ â†

−ky↓
)T

, (6.12)

and

Ψ↓k =
(

âkx↓ âky↓ â†
−kx↑ â†

−ky↑
)T

. (6.13)

We see that Ψ↑k corresponds to only spin-up electrons (and spin-down holes), while the converse is
true for Ψ↓k. We have effectively decoupled the two spin species in the Hamiltonian. Neither H↑k
nor H↓k are true BdG Hamiltonians because, rather than obeying (2.16), they each have the form(

H0,k ∆k

∆†
k −H0,−k

)
, (6.14)

with

H↑0,k = hk,00η0 + hk,10η1 + hk,23η2 + hk,30η3, (6.15)

∆↑k = ∆k,01η0 + ∆k,11η1 + ∆k,22η2 + ∆k,31η3, (6.16)

in the spin-up sector, and

H↓0,k = hk,00η0 + hk,10η1 − hk,23η2 + hk,30η3, (6.17)

∆↓k = ∆k,01η0 + ∆k,11η1 − ∆k,22η2 + ∆k,31η3, (6.18)

in the spin-down sector. The difference between the two sectors is the sign of the h23 and ∆22 terms.
If these terms were excluded from our model, the BdG Hamiltonian would be independent of spin.
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The utility of this decomposition can be seen by writing

H↑ = 1
2 ∑

k

(
â†

ki↑ â−ki↓
)(H↑0,k,ij ∆↑k,ij

∆↑∗k,ij −H↑0,k,ij

)(
âkj↑

â†
−kj↓

)
(6.19)

=
1
2 ∑

k

(
â†

ki↑ â−ki↓
)(H↓0,k,ji ∆↓k,ji

∆↓∗k,ji −H↓0,k,ji

)(
âkj↑

â†
−kj↓

)
, (6.20)

where we have used H0,−k = H0,k, and the second line is achieved by noting that H↓0 and ∆↓ are
related to their spin-up counterparts via matrix transposition. Applying the fermionic anticommu-
tation relations, we obtain

H↑ = 1
2 ∑

k

[ (
âki↑ â†

−ki↓
)(−H↓0,k,ij −∆↓∗k,ij

−∆↓k,ij H↓0,k,ij

)(
â†

kj↑
â−kj↓

)]
+ Tr

(
H↓0,k,ii 0

0 −H↓0,k,ii

)
, (6.21)

where the trace term is obviously vanishing. Taking k→ −k under the summation, while noting
that H0,−k = H0,k and ∆−k = −∆k, we have

H↑ = 1
2 ∑

k

(
â−ki↑ â†

ki↓
)(−H↓0,k,ij ∆↓∗k,ij

∆↓k,ij H↓0,k,ij

)(
â†
−kj↑
âkj↓

)
. (6.22)

Finally, we can reorder the spinors to find that the Hamiltonian is the same in each spin sector:

H↑ = 1
2 ∑

k

(
â†

ki↓ â−ki↑
)(H↓0,k,ij ∆↓k,ij

∆↓∗k,ij −H↓0,k,ij

)(
âkj↓

â†
−kj↑

)
= H↓. (6.23)

This result can be substituted into (6.11) to show that that the mean-field Hamiltonian can be
written entirely in terms of one sector, i.e.

HMF = ∑
k

Ψ↑†k H↑kΨ↑k = ∑
k

Ψ↓†k H↓kΨ↓k. (6.24)

This is particularly convenient for numerical calculations as it means we can deal with 4 × 4
matrices, rather than the full 8× 8 BdG Hamiltonian. This decomposition is the same as that
mentioned briefly at the end of Section 5.1, and, as mentioned there, each spin sector contributes
equally to the Hall conductivity. The assumptions behind it (i.e. that H0 and ∆̃ are diagonal in spin)
are the same as those that predicated the discussion in Section 5.3.2, which showed that interband
pairing is required within this model.

6.1.2 Insights from the TROBs

Using H0 and ∆̃ as given by (6.1) and (6.2), the TROBs, (5.61) and (5.62), can be calculated to be

TROB1 = 4 Im{∆31∆∗22}η1 ⊗ σ3 + 4 Im{∆11∆∗31}η2 ⊗ σ0 + 4 Im{∆22∆∗11}η3 ⊗ σ3, (6.25)
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and

TROB2 = 4(ĥ10 Im{∆22∆∗31}+ ĥ30 Im{∆11∆∗22}+ ĥ23 Im{∆31∆∗11})η0 ⊗ σ3

+ 4(ĥ30 Im{∆01∆∗22}+ ĥ23 Im{∆31∆∗01})η1 ⊗ σ3 + 4(ĥ10 Im{∆01∆∗31}+ ĥ30 Im{∆11∆∗01})η2 ⊗ σ0

+ 4(ĥ23 Im{∆01∆∗11}+ ĥ10 Im{∆22∆∗01})η3 ⊗ σ3, (6.26)

where I have dropped the explicit momentum indices from the ∆k,ησ and ĥk,ησ terms for conve-
nience. We note that the momentum dependence of each term in TROB1 and TROB2 is real-valued,
implying that the TRSB arises from the orbital-spin structure of each term. We can understand
the terms that appear by noting that η0 ⊗ σ3, η1 ⊗ σ3, and η3 ⊗ σ3 break time-reversal because
they correspond to a spin polarisation (which might be orbitally dependent). Meanwhile, the
eigenstates of η2 are the definite-angular-momentum states dxz ± idyz, so we can understand the
η2 ⊗ σ0 term as an analogous orbital angular-momentum polarisation. (6.25) and (6.26) could now
be used to calculate the Hall conductivity in the high-frequency, small-gap limit using (5.59), but
the resulting expression is prohibitively complicated. I will instead take the time to exemplify how
these TROBs on their own can be used to gain insight into the necessary conditions for a non-zero
Hall conductivity within this model.

The most important take away is that each term in TROB1 and TROB2 involves two pairing
channels. This means that a pairing potential involving just one of the chiral Eu pairing channels is
not sufficient to lead to a non-zero Hall conductivity. On the other hand, it might be possible to
obtain a non-zero Hall conductivity if we include just two of the four channels in our model. It is
also worth noting that, except in very particular cases, if TROB1 is nonzero, so too will TROB2 be.
The converse statement does not apply. In Chapter 4 we found that the orbitally trivial channel,
∆01, involves purely intraband pairing (refer to Table 4.4). At the same time, we showed in Section
5.3.2 that a necessary condition for the Hall conductivity, within the Eu pairing states considered
here, is the presence of interband pairing. While TROB1 is independent of ∆01, this channel does
appear in TROB2, indicating that it can contribute to the Hall conductivity. This is not an issue
because it always appears along with one of the orbitally nontrival pairing channels, which each
involve some degree of interband pairing.

6.1.3 Pairing potential ansatz

Rather than providing an exhaustive analysis of the Hall conductivity within this model, using
the pairing potential given by (6.2), I will instead focus on two specific sub-models. In each case I
choose to include just two terms in the pairing potential, as this is the minimum number required
to obtain non-vanishing TROBs. For the first model I include just ∆01 and ∆31, in which case the
pairing potential is given by

∆k = ∆0,01(sin kx + i sin ky)η0 ⊗ σ1 + ∆0,31(sin kx − i sin ky)η3 ⊗ σ1, (6.27)

where ∆0,01, ∆0,31 ∈ C. We have the freedom to choose the overall phase of the pairing potential,
so I take ∆0,01 ∈ R+. Further, by a similar argument as that used in Section 3.4, the lowest-order
Ginzburg–Landau expansion can be used to show that the free energy of the superconducting
state will be minimised by taking ∆0,31 ∈ R [36]. The magnitude of the pairing in each channel
remains free, but we have been able to restrict the relative phase between the channels such that
(6.27) only involves two free parameters. I will refer to (6.27) as the triplet-triplet model because
each channel involved describes purely spin-triplet pairing. Additionally, this model corresponds
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to purely intraorbital pairing, as both η0 and η3 are diagonal. The pairing of electrons from the
dxz orbital is of the form (∆0,01 + ∆0,31) sin kx + i(∆0,01 − ∆0,31) sin ky, which is predominantly
dependent on sin kx for ∆0,31 > 0. Similarly, the dyz pairing is predominantly ∼ sin ky. The
physical motivation behind this choice arises from a simple model of strontium ruthenate with one-
dimensional bands corresponding to each orbital [95], which can essentially be obtained by ignoring
the band hybridisation present in Figure 3.2 B. In this model, the dxz band is one-dimensional (in
the x direction) so we would expect pairing in this band to only depend on the x component of
momentum. Similarly, the dyz band would be expected to only have ky dependence, which would
essentially be the case in this model when ∆0,01 ≈ ∆0,31. This model is also that considered by
Taylor and Kallin [26].

Our second case, which I will dub the singlet-triplet model, is given by

∆k = ∆0,22(sin kx + i sin ky)η2 ⊗ σ2 + ∆0,31(sin kx − i sin ky)η3 ⊗ σ1, (6.28)

where I take ∆0,22 ∈ R+ and ∆0,31 ∈ R by the same arguments as above. Unlike the triplet-triplet
model, there is no specific physical motivation behind this choice. I include it here because it
involves an odd-momentum spin-singlet term, which means it is a case in which the orbital degree
of freedom needs to be taken into account in order for fermionic antisymmetry to be obeyed.
Even among such unconventional states more attention has been focussed on even-momentum
spin-triplet states [77, 96, 97] like the A1g and Eg terms in Table 4.4 (I have argued that they can be
excluded from our two-orbital model, but analogous terms can be included in three-orbital models).
I choose this model involving ∆22 out of curiosity regarding its exotic pairing structure.

The band structure for each of these models is presented in Figure 6.1. In these plots the
magnitude of the pairing in each channel has been chosen so as to be large enough to emphasise the
opening of band gaps, and is not physically realistic. Both intra- and interband gaps can be seen,
the magnitudes of which are highly dependent on the model. For example, the triplet-triplet model
opens a large intraband and a small interband gap between the X and M points, while the opposite
is true in the singlet-triplet model. While the intra- and interband pairing present in each of these
models can be determined using the superconducting fitness, the connection to nodal structures
presented in Table 4.4 is not particular clear, due to the presence of two pairing channels here.

Within the triplet-triplet model the pairing in each spin sector, as given by (6.16) and (6.18),
is the same, which is to say that it is independent of the spin. For this reason, the pseudospin
degeneracy is not lifted in the superconducting state, as evidenced by the presence of just four
energy bands in Figure 6.1 A. One outcome of this is that the eigenvalues within each spin sector
have the form

Ei = {E1, E2, E3 = −E1, E4 = −E2}, (6.29)

analogous to those of a 4× 4 BdG Hamiltonian. This is not the case in the singlet-triplet model,
due to the sign change of the ∆22 term between (6.16) and (6.18). Although the eigenvalues of the
overall BdG Hamiltonian still come in ± pairs, this is not true within each spin sector. The resulting
lifting of the pseudospin degeneracy is observed between the M and Γ points.

6.2 Pairing potential amplitudes

We would now like to proceed with calculating the Hall conductivity within the triplet-triplet and
singlet-triplet models. In Section 3.3.1 we identified some reasonable values for parameters which
can be used to construct H0, but we do not currently have values for the pairing amplitudes ∆0,01,
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FIGURE 6.1: The band structure between high symmetry points in both the triplet-triplet and singlet-triplet
models. Solid grey lines indicate the energy spectrum of the superconducting state, while solid (dashed) red
and blue lines indicate the normal state electronic (particle-hole reversed) dispersion of each band. For the

purposes of visualisation the gap amplitude was taken to be ∆0/t1 = 0.15 in each channel.

∆0,31, and ∆0,22. One approach would be to simply choose physically reasonable values for each
of these amplitudes which we would then feed into the calculation of the Hall conductivity for
each model. However, I choose instead to self-consistently determine the pairing amplitudes by
minimising the free energy of the system while treating the amplitudes as variational parameters.
As we will see, this approach still requires us to choose somewhat arbitrary values associated with
the interaction potential, but it has the advantage that we will be able to extract the temperature
dependence of the gap amplitudes, and ultimately the Hall conductivity.

6.2.1 Minimising the free energy

In the absence of an external magnetic field it is most appropriate to consider the Helmholtz free
energy of the superconducting state. This can be calculated from the partition function

Z = ∑
j

e−βεj , (6.30)

where εj is the energy of the jth many-particle state of the full system. Working in the mean-field
regime, the Hamiltonian is given by (2.15) to be

HMF =
1
2 ∑

k
Ψ†

kHkΨk = ˜∑
k

Ψ†
k HkΨk, (6.31)

where ∑̃k refers to a sum over one half of the Brillouin zone, as discussed at the start of Chapter 2.
One may think that the energies of the system will therefore be

εj =
˜∑
k

∑
α,±

Ekα±nkα±,j,

where Ekα± = ±Ekα are the eigenvalues of the BdG Hamiltonian, Hk (the ± arises from the
reflection of the energy bands for the hole states), and nkα±,j is the occupancy of the {k, α,±}
single-particle state in the jth many-particle state of the full system. However, this is not quite
correct: when we were constructing the mean-field Hamiltonian in Sections 2.1.1 and 2.1.2 we
dropped two “constant” terms, one fromH0, and the other fromHint. For our purposes at the time
it was justified to neglect both of these terms as they only contribute to an overall shift in the energy
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of the system. But we now wish to compare the free energy of different pairing states, so we must
reintroduce the term we dropped fromHint. We still exclude the term we dropped fromH0 as it
remains unchanged between different superconducting states. The correct form of εj is therefore

εj =
˜∑
k

∑
α±
±Ekαnkα±,j − K, (6.32)

where K is given in (2.7) to be

K =
1
2

1
N ∑

k,k′
Vk,k′,α1α2,α3α4

〈â†
−kα1

â†
kα2
〉 〈âk′α3

â−k′α4
〉. (6.33)

We can conclude that the correct form of the partition function is therefore

Z = eβK ˜∏
k

∏
α,±

∑
j

e∓βEkαnk,α,±,j = eβK ˜∏
k

∏
α,±

(1 + e∓βEkα), (6.34)

where we used the fact that the occupancy of a given single-particle fermionic state can be either
zero or one, and ∏̃ refers to a product across half the Brillouin zone. We can use

∏
±

ln
(

1 + e∓βEkα

)
=
(

1 + e−βEkα)(1 + eβEkα

)
=
(

e−βEkα/2 + eβEkα/2
)2

in order to write the Helmholtz free energy as

F = − 1
β

ln Z = − 1
β

˜∑
k

∑
α

ln
[(

e−βEkα/2 + eβEkα/2
)2
]
− K (6.35)

= − 2
β

˜∑
k

∑
α

ln [2 cosh(βEkα/2)]− K. (6.36)

Finally, we can use ∑̃k = 1
2 ∑k in order to write

F = − 1
β ∑

k,α
ln [2 cosh(βEkα/2)]− K. (6.37)

Evaluating the constant term

In principle, a microscopic theory of the pairing in strontium ruthenate could be used to calculate
K from (6.33), but is well beyond the scope of this thesis. Instead, I adopt a phenomenological
interaction potential which describes pairing within each channel, as well as between channels.
Allowing for an arbitrary number of channels, we write

Vk,k′,α1α2,α3α4
= ∑

ν,ν′
λνν′ fν,k,α1α2 f ∗ν′ ,k′ ,α4α3

, (6.38)

where λνν′ is the interaction strength for the process that destroys a Cooper pair in the ν′ channel
and creates one in the ν channel. This interaction is attractive for λνν′ < 0, and must satisfy

λνν′ = λ∗ν′ν (6.39)
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so that the Hamiltonian is Hermitian. The f terms are matrices which describe the momentum,
orbital, and spin dependence of each channel. Fermionic antisymmetry, (2.4), requires that

fν,k,α1α2 = − fν,−k,α2,α1 . (6.40)

We can substitute (6.38) into (2.8) in order to write the pairing potential as

∆k,ij = −
1
N ∑

ν,ν′
λνν′ ∑

k′
〈âk′α3

f ∗k′ ,ν′ ,α4α3
â−k′α4

〉 fν,k,ji, (6.41)

which can easily be deconstructed into a pairing potential per channel:

∆ν,k,ij = −
1
N ∑

ν′
λνν′ ∑

k′
〈âk′α3

f ∗k′ ,ν′ ,α4α3
â−k′α4

〉 fν,k,ji. (6.42)

Seeing as fν,k,ji describes the momentum, orbital, and spin dependence of the pairing potential in
the ν channel, the amplitude of the pairing potential in this channel is

∆0,ν = − 1
N ∑

ν′
λνν′ ∑

k′
〈âk′α3

f ∗k′ ,ν′ ,α4α3
â−k′α4

〉. (6.43)

It will be useful to note that we can write the complex conjugate of ∆0,ν as

∆∗0,ν = − 1
N ∑

ν′
λ∗νν′ ∑

k′
〈â†
−k′α4

fk′ ,ν′ ,α4α3
â†

k′α3
〉

= − 1
N ∑

ν′
λ∗νν′ ∑

k′
〈â†
−k′α1

fk′ ,ν′ ,α1α2
â†

k′α2
〉. (6.44)

In addition to the pairing potential, I also define the following term:

∆ν = −λν

N ∑
k
〈âkα3 f ∗k,ν′ ,α4α3

â−kα4〉, (6.45)

along with its complex conjugate

∆∗ν = −λν

N ∑
k
〈â†
−kα1

fk,ν′ ,α1α2
â†

kα2
〉, (6.46)

where I have denoted λνν = λν, and (6.39) implies that λ∗ν = λν. While ∆ν has specifically been
defined to be similar to ∆0,ν, it is not the amplitude of a pairing potential, but it will play an
important role when it comes to numerically minimising the free energy.

We now have all the ingredients required to write K in a convenient form. If we substitute (6.38)
into (6.33) we obtain

K =
1
2 ∑

ν,ν′
λνν′ ∑

k,k′
〈â†
−kα1

fk,ν,α1α2 â†
kα2
〉 〈âk′α3

f ∗k′ ,ν′ ,α4α3
â−k′α4

〉. (6.47)

Further substituting in ∆ν and ∆∗ν , we can write

K =
N
2 ∑

ν,ν′

λνν′

λνλν′
∆∗ν∆ν′ , (6.48)

which is significantly easier to deal with than (6.33). In order to use (6.48) when minimising the
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free energy with respect to the pairing amplitudes we need to be able to express ∆ν in terms of ∆0,ν′ ,
which can be done by comparing (6.43) and (6.45). If there is only one pairing channel, the two
expressions are equivalent. In the case of two pairing channels, as is the case in the models we are
dealing with, we have

∆0,1 = ∆1 +
λ12

λ2
∆2, ∆0,2 = ∆2 +

λ12

λ1
∆1, (6.49)

and K is given by

K =
N
2

(
|∆1|2
λ1

+
|∆2|2
λ2

+
λ12∆

∗
1∆2

λ1λ2
+

λ21∆1∆
∗
2

λ1λ2

)
.

We can then write the free energy as

F = − 1
β ∑

k,α
ln [2 cosh(βEkα/2)]− N

2

(
|∆1|2
λ1

+
|∆2|2
λ2

+
λ12∆

∗
1∆2

λ1λ2
+

λ21∆1∆
∗
2

λ1λ2

)
. (6.50)

It is possible to generalise these results to larger numbers of pairing channels, but this would serve
no purpose for us here.

6.2.2 Numerical results

We can use (6.50) in conjunction with (6.49) to minimise the free energy with respect to ∆0,1 and ∆0,2

in our models of strontium ruthenate. There are a few details to keep in mind when performing
these numerical calculations, which are discussed in Appendix A.1. In the absence of a microscopic
theory, we must still choose reasonable values for the interaction strengths. Rather than aiming
for quantitative predictions, I choose these so as to demonstrate some representative cases. The
only physical consideration behind our choices is that the resulting gap magnitudes and critical
temperatures should be of roughly the correct order of magnitude.

Triplet-triplet model: For the triplet-triplet model I choose two sets of interaction strengths:

1. λ01/t1 = −0.2, λ31/t1 = −0.265, λ01,31/t1 = 0.03, resulting in the coexistence of gaps of a
similar magnitude in each channel, as shown in Figure 6.2 A. These parameters were fine-
tuned so as to exhibit the non-monotonic temperature dependence of the gaps present in this
plot: below kBT/t1 ≈ 0.01 there is competition between the channels resulting in a reduction
in |∆0,31|. The inter-channel interaction strength is taken to be real-valued for simplicity. It is
also taken to be repulsive, which explains the competition between the two channels.

2. λ01/t1 = −0.2, λ31/t1 = −0.06, λ01,31/t1 = 0.03, corresponding to much weaker pairing in
one channel compared to the other (and a correspondingly smaller gap magnitude). The
resulting gap magnitudes are shown in Figure 6.2 B. Similar sets of interaction strengths were
examined, none of which exhibited the non-monotonic behaviour of Figure 6.2 A. Presumably
this is because the ∆31 channel is too weak to compete with the ∆01 channel. The inter-channel
interaction strength is taken to be the same as above.

A more comprehensive survey of the interaction strengths is always possible, but I focus on these
two representative cases. In both cases the critical temperature of the two-channel chiral state
occurs around kBT/t1 = 1.3× 10−2. Noting that experimental results indicate t1 ≈ 0.4 eV [78],
this corresponds to Tc ≈ 60 K, significantly larger than experimentally measured values around
1.5 K [57]. This might appear worrying at first glance, but note that with these parameters we still
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FIGURE 6.2: Pairing potential amplitudes as a function of temperature in the triplet-triplet model. Solid lines
indicate the full state, while dashed lines indicate the amplitude in the presence of only one pairing channel.

Calculated using N = 500× 500 lattice points and 200 temperature values.

have ∆0,ν � t1, placing us well within the weak-coupling regime. Further decreasing the critical
temperature (and the gap magnitudes along with it) to be more physical would not qualitatively
change our results, while coming with significant numerical costs (refer to the discussion in
Appendix A.3).

The dashed lines in Figure 6.2 show the “independent” gap amplitudes, i.e. those in the case
that only one channel is present. For the second set of parameters, the ∆31 channel interaction
is too weak for its critical temperature to be visible on the scale used in the plot. In all cases
the independent amplitudes exhibit the typical

√
1− T/Tc behaviour below Tc. For both sets of

parameters the critical temperature of the triplet-triplet model is lower than that of the ∆01 channel
on its own, implying that the triplet-triplet pairing state (6.27) is unlikely to be realised. However,
this is dependent on the specific interaction strengths chosen, and should not be taken as a general
conclusion regarding the triplet-triplet model.

Note that we have ∆0,31 < 0 for both sets of interaction strengths. This contradicts the justifi-
cation for the triplet-triplet model outlined in Section 6.1.3. While this means that our interaction
strengths are physically dubious, we are only going for qualitative results anyway, so it should not
present much of an issue. We will see below that the frequency-dependence of the Hall conductivity
does not qualitatively depend on the magnitude or temperature dependence of the gaps.

Singlet-triplet model: For the singlet-triplet model I have chosen to deal with just a single set of
interaction strengths: λ22 = −0.45/t1, λ31 = −0.25/t1, λ01,31 = 0.01/t1. These were selected such
that the two channels had similar gap magnitudes, as shown in Figure 6.3. They were fine-tuned
such that the critical temperature was similar to those in the triplet-triplet models above. A range
of inter-channel interaction strengths was surveyed, with no non-monotonic behaviour observed.

Chiral superposition of 1D irreps: As noted in Section 3.4.2, it is possible to form a chiral state
from the complex superposition of two pairing potentials, each belonging to a different one-
dimensional irrep. In addition to the triplet-triplet and singlet-triplet models considered so far, I
also attempted to construct states of the following forms: A1u + iA2u, B1u + iB2u, and B1g + iB2g.
These have been notably absent from the discussion so far because, when numerically minimising
the free energy for these states, I was unable to find any set of interaction strengths such that a
coexistence between two such channels was stable. The energetically favoured state only ever
involved the opening of a gap in a single channel. This is not a general result, and must be
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FIGURE 6.3: Pairing potential amplitudes as a function of temperature in the singlet-triplet model, with
the interactions strengths λ22 = −0.45, λ31 = −0.25 and λ01,31 = 0.01. Solid lines indicate the full state,
while dashed lines indicate the amplitude in the presence of only one pairing channel. Calculated using

N = 500× 500 lattice points and 200 temperature values.

somewhat related to the details of this specific model. I did not have time to examine this further,
but it is an interesting observation in itself, especially in light of recent proposals of such a state in
strontium ruthenate [83, 84].

6.3 Hall conductivity

6.3.1 Exact result

Now that we have calculated the amplitudes of the pairing potentials, they can be used to numeri-
cally construct the BdG Hamiltonian, and in turn to calculate the Hall conductivity using (5.30),
which is reproduced here for convenience:

σH(ω) =
ie2

4Nω
lim

iωn→ω+i0+
∑
k

1
β ∑

m
Tr
{[

vx
kGk,iωn+iνm vy

k − vy
kGk,iωn+iνm vx

k

]
Gk,iνm

}
.

It would be possible to calculate the Matsubara Green’s functions directly using (5.41), but this
would leave us with the problem of how to numerically perform the Matsubara summation and the
analytic continuation in (5.30). Instead, we need to do a bit more analytic work in order to write the
Hall conductivity in a form that can be calculated numerically. We begin by using (5.44) to write
the Matsubara Green’s functions as

Gk,iνm = ∑
α,±

|k, α,±〉 〈k, α,±|
iνm − Ekα±

, (6.51)

where Ekα± = ±Ekα, and α enumerates the four particle-like eigenstates of Hk. We can then write

vi
kGk,iωn+iνm vj

kGk,iνm = ∑
α,α′
±,±′

vi
k |k, α,±〉 〈k, α,±| vj

k |k, α′,±′〉 〈k, α′,±′|
(iωn + iνm − Ekα±)(iνm − Ekα′±′)

, (6.52)

and therefore

Tr
{

vi
kGk,iωn+iνm vj

kGk,iνm

}
= ∑

α,α′
±,±′

〈k, α,±| vi
k |k, α′,±′〉 〈k, α′,±′| vj

k |k, α,±〉
(iνm − Ekα±)(iωn + iνm − Ekα′±′)

, (6.53)
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where we have used 〈k, α,±|k, α′,±′〉 = δαα′δ±±′ . Substituting this result into (5.30) yields

σH(ω) =
ie2

4Nω ∑
k

∑
α,α′
±,±′

[(
lim

iωn→ω+i0+

1
β ∑

m

1
(iνm − Ekα±)(iωn + iνm − Ekα′±′)

)

×
(
〈k, α,±| vx

k
∣∣k, α′,±′

〉 〈
k, α′,±′

∣∣ vy
k |k, α,±〉 − 〈k, α,±| vy

k

∣∣k, α′,±′
〉 〈

k, α′,±′
∣∣ vx

k |k, α,±〉
) ]

,

where we have conveniently been able to pull out the iνm dependence into a single term. Using
〈ψ|O|ψ〉∗ = 〈ψ|O†|ψ〉, we note that the second line can be written as

2i Im
{
〈k, α,±| vx

k
∣∣k, α′,±′

〉 〈
k, α′,±′

∣∣ vy
k |k, α,±〉

}
because the velocity matrices are Hermitian. Carrying out the Matsubara summation yields

σH(ω) =
e2

4Nω ∑
k

∑
α,α′
±,±′

[
tanh

(
Ekα±β

2

)
− tanh

(
Ekα′±′ β

2

)
Ekα± − Ekα′±′ + ω + i0+

× Im
{
〈k, α,±| vx

k
∣∣k, α′,±′

〉 〈
k, α′,±′

∣∣ vy
k |k, α,±〉

}]
, (6.54)

which is suitable for numerical calculations because Ekα± and |k, α,±〉 can be easily calculated by
numerical diagonalisation of the BdG Hamiltonian. The infinitesimal must be approximated by a
“small” float. I take this to be 0+ = 10−3, the validity of which is addressed in Section 6.3.4. Further
analytic calculations with (6.54) are essentially impossible due to the complexity of the expression.

Numerical calculations of (6.54) as a function of frequency and temperature in both the triplet-
triplet and singlet-triplet models are presented in Section 6.3.4, but before we continue it is worth
noting an important analytic result that can be ascertained from (6.54). In particular, consider the

1
Ekα± − Ekα′±′ + ω + i0+

=
Ekα± − Ekα′±′ + ω

(Ekα± − Ekα′±′ + ω)2 + (0+)2 −
i0+

(Ekα± − Ekα′±′ + ω)2 + (0+)2

part, for which we have

1
Ekα± − Ekα′±′ + ω + i0+

0+→ 0−−−−→ 1
Ekα± − Ekα′±′ + ω

− iπδ(Ekα± − Ekα′±′ + ω). (6.55)

The imaginary part of the Hall conductivity is determined by this delta function, i.e. there are
only contributions at the frequency ω from terms in the sum for which ω = Ekα′±′ − Ekα±. This
turns out to imply that the imaginary part of the Hall conductivity will vanish below some finite
frequency. To see why, I note first that

1. If Ekα± = Ekα′±′ then the tanh terms in (6.54) cancel, so there is no contribution to the
imaginary part of the Hall conductivity at exactly zero frequency.

We could, however, still imagine the energy difference between two bands approaching zero,
allowing for contributions to the imaginary part of the Hall conductivity at arbitrarily small
frequencies. For example, if we refer to Figure 6.1 B, there are momentum values between the M
and Γ points in which the spin degeneracy between two bands is lifted, but only by a very small
amount. However, it turns out that
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2. The {α,±; α,∓} contributions vanish because the velocity matrix is block-diagonal in particle-
hole space, and hence 〈α,±| vx |α,∓〉 = 0 in (6.54).

3. The contribution from the {k, α, α′,+,+} term cancels with the {−k, α′, α,−,−} term even
for α 6= α′, since vhi

k,α1α2
= −vei

−k,α2α1
, and the velocity matrices are Hermitian.

Together these mean that contributions to (6.54) must involve an electron-like band and a different
hole-like band, i.e. only {α,±; α′,∓} contributions are permitted, for α 6= α′. The corresponding
energy bands are separated from each other by a finite energy gap, so we can conclude that the
imaginary part of the Hall conductivity will vanish below some finite frequency. The energy
separation between these bands is determined by the normal state parameters, so we expect this
“cutoff frequency” to be on the order of h̄ω ∼ t1.

6.3.2 High-frequency, small-gap limit

In addition to this exact result, we can use (5.59) to evaluate the Hall conductivity in the high-
frequency, small-gap limit for both the triplet-triplet and singlet-triplet models. The details of the
calculations are not particularly enlightening, but are easily performed using software packages
such as Mathematica.

Triplet-triplet model: By taking vx
23 = vy

23 = 0 (as h23 is constant in our model), we can evaluate
(5.59) with the triplet-triplet pairing potential, (6.27), in order to obtain

σH(ω) ≈ 16e2

ω2
1
N ∑

k
h10[v10 ∧ v30] Im{∆∗01∆31}

1
β

∞

∑
m=−∞

1
(E2

+ + ν2
m)(E2

− + ν2
m)

, (6.56)

where E± are the normal state eigenenergies. Only TROB2 contributes to this expression because
the triplet-triplet model involves ∆01 (refer to the discussion is Section 6.1.2). Performing the
Matsubara summation yields

σH(ω) ≈ 8e2

ω2
1
N ∑

k
h10[v10 ∧ v30] Im{∆∗01∆31}

E+ tanh
(

E−β
2

)
− E− tanh

(
E+β

2

)
E+E−(E2

+ − E2
−)

. (6.57)

Singlet-triplet model: Similarly, in the singlet-triplet model we have

σH(ω) ≈ 128e2

ω2
1
N ∑

k
h00h10h23[v10 ∧ v30] Im{∆∗22∆31}

1
β

∞

∑
m=−∞

ν2
m

(E2
+ + ν2

m)
2(E2
− + ν2

m)
2

, (6.58)

where the Matsubara summation can be carried out in order to obtain

σH(ω) ≈ 16e2

ω2
1
N ∑

k
h00h10h23[v10 ∧ v30] Im{∆∗22∆31}

× E+ sech2( E−β
2 )

[
(E2

+ − E2
−)E−β + (E2

+ + 3E2
−) sinh(E−β)

]
− {E+ ↔ E−}

E+E−(E2
+ − E2

−)3
. (6.59)

There are contributions from both TROBs to this expression.
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6.3.3 High-frequency approximation

In addition to the high-frequency, small-gap limit considered by the TROB result, we will briefly
consider the Hall conductivity in the high-frequency limit alone. This has the well known form [93]

σH(ω) ≈ i
Nω2

〈
[Jx,Jy]

〉
, (6.60)

where, unlike the calculation of the current-current correlator (5.5), the two current operators are
evaluated at the same imaginary-time. The expectation value is taken with respect to the eigenstates
of the BdG Hamiltonian, in contrast to the eigenstates of H0 used in the high-frequency, small-gap
limit. In order to calculate (6.60) we must first calculate the commutator between Jx and Jy. The
most convenient way to approach this is to rewrite (5.11) as

Ji =
e
2 ∑

k
Ψ†

kvi
kΨk = e ∑

k
Ψ↑†k v↑ik Ψ↑k, (6.61)

where vi
k is defined in terms of (5.9) and (5.10) in (5.22), the Nambu spinor Ψk is given in (3.1), and

the spin-up and spin-down spinors are given in (6.12) and (6.13) respectively. We have been able to
write this in terms of a single spin sector be exploiting (6.24). We want to calculate

[Jx,Jy] = e2 ∑
k,k′

[
Ψ↑†k v↑xk Ψ↑k, Ψ↑†k′ v

↑y
k′ Ψ

↑
k′

]
. (6.62)

It can be shown that, for H0 as given in (6.1), we can write

[Jx,Jy] = −2e2 ∑
k
{[v10 ∧ v30](Ψ

↑†
k,1Ψ↑k,2 −Ψ↑†k,2Ψ↑k,1 + Ψ↑†k,3Ψ↑k,4 −Ψ↑†k,4Ψ↑k,3)

+ i[v30 ∧ v23](Ψ
↑†
k,1Ψ↑k,2 + Ψ↑†k,2Ψ↑k,1 + Ψ↑†k,3Ψ↑4 + Ψ↑†k,4Ψ↑k,3)

+ i[v23 ∧ v10](Ψ
↑†
k,1Ψ↑k,1 −Ψ↑†k,2Ψ↑k,2 + Ψ↑†k,3Ψ↑k,3 −Ψ↑†k,4Ψ↑k,4)}, (6.63)

where Ψσ
k,i is the ith component of Ψσ

k. The derivation of (6.63) is rather involved, so I will not
present it here. However, it can be verified to be the same as the result presented in Appendix C of
[22] by making the following notational substitutions: ∂ki

ξk = vi
00, ∂ki

gk = vi
30, ∂ki

Re{εk} = vi
10,

and ∂ki
Im{εk} = vi

23. As h23 is constant in our model, we can set vx
23 = vy

23 = 0, and write

[Jx,Jy] = −2e2 ∑
k
{[v10 ∧ v30](Ψ

↑†
k,1Ψ↑k,2 −Ψ↑†k,2Ψ↑k,1 + Ψ↑†k,3Ψ↑k,4 −Ψ↑†k,4Ψ↑k,3)}. (6.64)

We can then use the fermionic anticommutation relations and the fact that vk = −v−k to show that

Ψ↑†k,1Ψ↑k,2 −Ψ↑†k,2Ψ↑k,1 + Ψ↑†k,3Ψ↑k,4 −Ψ↑†k,4Ψ↑k,3 = Ψ↓†k,1Ψ↓k,2 −Ψ↓†k,2Ψ↓k,1 + Ψ↓†k,3Ψ↓k,4 −Ψ↓†k,4Ψ↓k,3,

and therefore we can write (6.64) as

[Jx,Jy] = −e2 ∑
k
{[v10 ∧ v30](Ψ

↑†
k,1Ψ↑k,2 −Ψ↑†k,2Ψ↑k,1 + Ψ↑†k,3Ψ↑k,4 −Ψ↑†k,4Ψ↑k,3

+ Ψ↓†k,1Ψ↓k,2 −Ψ↓†k,2Ψ↓k,1 + Ψ↓†k,3Ψ↓k,4 −Ψ↓†k,4Ψ↓k,3)}. (6.65)
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As an aside, I note that this can be written as

[Jx,Jy] = −e2 ∑
k
[v10 ∧ v30]Ψ†

k(τ0 ⊗ η2 ⊗ σ0)Ψk, (6.66)

which implies that the orbital angular-momentum polarisation matrix, η2 ⊗ σ0, mentioned in the
context of the TROBs in Section 6.1.2, is critical when it comes to generating an anomalous Hall
conductivity in the high-frequency limit of our model. This result is unsurprising because we
have set the v23 velocity terms to be vanishing in our model, which means that the only nontrivial
components of the velocity matrix, and therefore the current operator, are proportional to η1 and η3

(i.e. v10 and v30). In turn, the only way that these can be combined nontrivially in the commutator
considered here is as an η2 term. Due to the small value of the momentum-dependent spin-orbit
coupling in strontium ruthenate [77], it is fairly safe to extend this argument to strontium ruthenate
in general, even outside of our model.

When it comes to calculating
〈
[Jx,Jy]

〉
we can set τ = 0 in (5.23) and (5.25) to show that

〈Ψ†
k,iΨk,j〉 = −〈Ψk,jΨ

†
k,i〉 =

1
β ∑

m
Gk,iνm ,ji, (6.67)

for i 6= j. This is true in general, and applies to each spin sector independently, so we have

〈
[Jx,Jy]

〉
= −e2 ∑

k

1
β ∑

m
[v10 ∧ v30](G↑21 − G

↑
12 + G

↑
43 − G

↑
34 + G

↓
21 − G

↓
12 + G

↓
43 − G

↓
34), (6.68)

where I have dropped the explicit momentum and frequency indices from the Green’s functions for
convenience. In practice we can calculate

〈
[Jx,Jy]

〉
− e2 ∑

k

1
β ∑

m
[v10 ∧ v30](G↑21 − G

↑
12 + G

↑
43 − G

↑
34) + {h23 → −h23, ∆22 → −∆22}, (6.69)

seeing as the spin sectors differ only by the sign of h23 and ∆22. We substitute (6.69) into (6.60) in
order to determine the high-frequency approximation of the Hall conductivity.

Triplet-triplet model: When we evaluate (6.69) for the triplet-triplet model we obtain

σH(ω) ≈ 16e2

Nω2 ∑
k

1
β ∑

m

h10[v10 ∧ v30] Im{∆∗01∆31}
(iνm − E1)(iνm − E2)(iνm − E3)(iνm − E4)

, (6.70)

where {Ei} are the four eigenvalues of H↑k . These are too complicated to present here, but I note
that H↓k has the same set of eigenvalues, as discussed in Section 6.1.3. Carrying out the Matsubara
summation yields

σH(ω) ≈ −8e2

Nω2 ∑
k

h10[v10 ∧ v30] Im{∆∗01∆31}
4

∑
i=1

∑
j 6=i

 tanh
(

Ei β
2

)
(Ei − Ej)

 . (6.71)

This is a particularly nice result because the core part of its similarity to the high-frequency, small-
gap approximation (6.57). The only difference between the two expressions is the eigenvalues
that appear: if we take E1 → E+, E2 → −E+, E3 → E−, and E+ → −E−, we exactly replicate the
high-frequency, small-gap approximation. The physical motivation behind this set of substitutions
can be understood by the following argument: as noted in Section 6.1.3, the eigenvalues of each
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spin sector in the triplet-triplet model take the form {E1, E2, E3 = −E1, E4 = −E2}. If the pairing
potential is set to zero within these eigenvalues, they must take the form {±E+,±E−}, where E±
are the eigenvalues of H0. This seems to indicate that, at least in this case, the small-gap limit can
be applied to the high-frequency limit by setting ∆ν → 0 in each of the (time-reversal symmetric)
eigenenergies, while leaving the TRSB contribution from the gaps unchanged.

Singlet-triplet pairing: Evaluating (6.69) for the singlet-triplet model yields

σH(ω) ≈ −128e2

Nω2 ∑
k

1
β ∑

m

h00h10h23[v10 ∧ v30] Im{∆∗22∆31}ν2
m

∏8
i=1(iνm − Ei)

, (6.72)

where {Ei} are now the eight eigenvalues of the full BdG Hamiltonian. Unlike the triplet-triplet
model, the eigenvalues of the spin-up Hamiltonian are not the same as those of the spin-down
Hamiltonian. Just as for the triplet-triplet case, we note that the core part of this result is the same as
in the high-frequency, small-gap limit. It is only the dependence on the eigenvalues that is different
because they are dependent on the gaps. Unfortunately, (6.72) was not evaluated numerically
because the Matsubara summation is not analytically tractable, and we did not have sufficient time
to implement the otherwise necessary numerical evaluation.

6.3.4 Numerical results

We now turn to numerically calculating the Hall conductivity, using (5.30) as well as the approximate
results (6.57), (6.59), and (6.71). All three of the sets of interaction strengths introduced in Section
6.2.2 are considered here: two corresponding to the triplet-triplet model, and one to the singlet-
triplet model.

Triplet-triplet model: Figure 6.4 shows the Hall conductivity as a function of both frequency and
temperature for the triplet-triplet model with the first set of interaction strengths, corresponding to
the pairing potential amplitudes shown in Figure 6.2 A. As noted in Section 6.3.1, the imaginary
part of the Hall conductivity vanishes below some finite frequency. The frequency at which this
occurs is h̄ω ≈ t1/2, in accordance with the prediction that it be determined by the normal state
parameters. Close examination of the plots actually indicates small but non-zero values of the
imaginary Hall conductivity about zero frequency. This is a numerical artefact which arises from
taking a finite value of 0+ for these calculations. This also explains the spike in the imaginary Hall
conductivity at h̄ω ≈ t1/2, which is most obvious in Figure 6.4 A. A smaller numerical value of
0+ would be preferable, but would come at significant numerical costs. As we are not aiming for
quantitative results, this choice suffices.

The temperatures at which Figures 6.4 A–6.4 C are calculated at are chosen to coincide with
qualitatively different gaps (with respect to the competition between the two channels exhibited
in Figure 6.2 A). Qualitatively, the frequency dependence of the Hall conductivity at all three
temperatures is very similar, indicating that competition between the gaps has little affect on the
frequency response of the Hall conductivity. This is not necessarily a general result that would
apply to other models. Conversely, the magnitude of the Hall response has a strong temperature
dependence, as shown in Figures 6.4 D–6.4 F. In all three of these plots the magnitude of the Hall
response appears to follow the temperature dependence of the gaps from Figure 6.2 A, which is
consistent with the Hall conductivity scaling with ∆0,01∆∗0,31 in (6.57) and (6.71).

The approximate results show good agreement with the exact result above h̄ω/t1 ≈ 1, which
essentially defines the region in which the high-frequency approximation is valid. They do not
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FIGURE 6.4: The Hall conductivity as a function of frequency (A–C) and temperature (D–F) in the triplet-triplet
model using the first set of interaction strengths (λ01/t1 = −0.2, λ31/t1 = −0.265, λ01,31/t1 = 0.03). The
real (imaginary) part of the exact result is shown as a solid blue (red) line, while the high-frequency and
high-frequency, small-gap approximations are shown as dashed and dotted lines respectively. Calculated
using N = 5000× 5000 lattice points, the numerical approximation 0+ = 0.001 for a positive infinitesimal, 300

frequency values, and 200 temperature values respectively.
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FIGURE 6.5: The Hall conductivity as a function of frequency and temperature in the triplet-triplet model using
the second set of interaction strengths (λ01/t1 = −0.2, λ31/t1 = −0.06, λ01,31/t1 = 0.03). The real (imaginary)
part of the exact result is shown as a solid blue (red) line, while the high-frequency and high-frequency, small-
gap approximations are shown as dashed and dotted lines respectively. Calculated using N = 5000× 5000
lattice points, the numerical approximation 0+ = 0.001 for a positive infinitesimal, 300 frequency values, and

200 temperature values respectively.
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FIGURE 6.6: The Hall conductivity as a function of frequency (A and B) and temperature (C) in the singlet-
triplet model using the interaction strengths λ22/t1 = −0.45, λ31/t1 = −0.25, and λ01,31/t1 = 0.01. The real
(imaginary) part of the exact result is shown as a solid blue (red) line, while the high-frequency, small-gap
approximation is shown as a dotted line. Calculated using N = 5000× 5000 lattice points, the numerical
approximation 0+ = 0.001 for a positive infinitesimal, 1000 frequency values, and 200 temperature values

respectively.
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match at all in Figure 6.4 D, which is unsurprising as this is calculated at h̄ω/t1 = 0.6. The high-
frequency, small-gap approximation generally matches the high-frequency approximation well,
although it diverges at small temperatures. This can be understood by inspection of (6.57) and
(6.71). In the high-frequency limit (6.71) involves the eigenenergies of the spin-up sector, Ei. These
exhibit a gap about E = 0. Meanwhile, the normal state eigenenergies E+ and E−, which have
no such band gap, appear in (6.57). Let us consider what occurs at momentum values in which
E− → 0 in the tanh(E−/2T) part of (6.57):

tanh(E−/2T)
E−(E2

+ − E2
−)

E−→0−−−→ 1
2TE2

+

. (6.73)

As T becomes small this diverges, leading to an overestimation of the Hall conductivity at small tem-
peratures in the high-frequency, small-gap limit. The same argument applies to the tanh(E+/2T)
term in the E+ → 0 limit. Understandably, quantitative agreement between the approximate and
exact results is strongest at the highest frequency considered here, in Figure 6.4 F.

Taking t1 ≈ 0.4 eV [78], the frequency h̄ω/t1 = 2 used in 6.4 E corresponds to that used by Xia et
al. when measuring the polar Kerr effect in strontium ruthenate [57]. At least within this model, the
high-frequency, small-gap limit is experimentally appropriate, except at the lowest temperatures. I
do not want to over emphasise the importance of this point however, because this model was never
intended for quantitative predictions.

For comparison, Figure 6.5 shows the Hall conductivity in the triplet-triplet model as a function
of frequency and of temperature for the alternative set of interaction strengths. We see no qual-
itative differences in this case, except that the temperature dependence shown in Figure 6.5 B is
monotonically increasing because it follows the pairing potential amplitudes shown in Figure 6.2 B

Singlet-triplet pairing model: Figures 6.6 A and 6.6 B show the Hall conductivity of the singlet-
triplet model as a function of frequency on two different energy scales. The conductivity is large
within a narrow range of frequencies compared to the triplet-triplet case. In Figure 6.6 A the high-
frequency limit, (6.59), appears to be vanishing, although Figure 6.6 B shows that it is fact just very
small, and in strong agreement with (6.54) above h̄ω/t1 ≈ 5.5. This is an important qualitative
difference between this model and the triplet-triplet model, and goes to show that the experimental
applicability of the approximate results are highly dependent on the details of the system. As noted
in Section 6.3.3, I was unable to write the high-frequency approximation in a form that leant itself
to numerical calculations, so it cannot be shown here for comparison.

The Hall conductivity is shown as a function of temperature in 6.6 C. The exact result behaves
as expected. The frequency used for these calculations is h̄ω/t1 = 7, which falls in the high-
frequency regime, as indicated by 6.6 B. Even here the high-frequency, small-gap approximation is
in quantitative agreement for only a small range of temperatures. It rapidly diverges as we move
away from the critical temperature.

Summary

In this chapter we used the TROBs identified in Chapter 5 in order to construct two specific
models of strontium ruthenate that might exhibit a non-vanishing Hall conductivity. This was
subsequently calculated exactly, and in the high-frequency, and high-frequency, small-gap limits.
These approximate calculations gave qualitatively (and sometimes even quantitatively) accurate
results within their respective limits.
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Chapter 7

Conclusions and outlook

In this thesis I have considered intrinsic contributions to the anomalous Hall conductivity of
two-band superconductors in the linear-response regime. In particular, I considered the role of
time-reversal-odd bilinear functions of the pairing potential, and identified two such TROBs which
play a central role in determining the intrinsic anomalous Hall conductivity in the high-frequency,
small-gap limit. Although the concept of a TROB was introduced in a previous work [27], I
have generalised its applicability and clarified its role in the anomalous Hall conductivity. The
importance of these TROBs is not that they can be used to explicitly calculate the Hall conductivity,
but rather that they provide a necessary condition for a non-vanishing Hall conductivity. At least one
of the TROBs must be non-vanishing in order for a given system to exhibit intrinsic contributions
to the anomalous Hall conductivity in the high-frequency, small-gap limit. Because these TROBs
are straightforward to calculate, they provide an easy mechanism to test whether a given model
might exhibit a Hall conductivity, which is useful when it comes to developing theoretical models
to explain observations of the polar Kerr effect in materials of interest. As an illustrative example, I
constructed a two-orbital model of strontium ruthenate, and utilised the TROBs to constrain the
pairing states to be consistent with an anomalous Hall conductivity.

Although the TROBs only act as a necessary condition for an anomalous Hall conductivity in
the high-frequency, small-gap limit, they are informative even outside of this regime. The high-
frequency, small-gap approximation of the Hall conductivity is obtained by neglecting certain terms,
and it is unlikely for these to exactly cancel with the terms that are kept. If the Hall conductivity is
non-zero in the high-frequency, small-gap limit, it is probably also non-vanishing in general. This is
somewhat exemplified in Chapter 6, where both of the models considered have a non-zero Hall
conductivity in general. It is a useful result because the relevance of the high-frequency, small-
gap limit to experimental endeavours is dependent on the details of the system in question. For
example, the high-frequency approximation is valid at frequencies used in previous experiments
[57], but this is not the case for the singlet-triplet model. If both TROBs are vanishing on the
other hand, we cannot make claims about the Hall conductivity in general, because higher order
corrections to (5.59) could conceivably contribute (although they would be expected to be on the
order of ∼ |∆|4, so should be much smaller). This is an unfortunate restriction on the applicability
of my result, especially because the temperature range over which the small-gap approximation
is valid is unclear in general. For example, the validity of the small-gap approximation is quite
good at all but the lowest temperatures in the triplet-triplet model, but only for a small range of
temperatures is the singlet-triplet model. A generalisation away from the small-gap limit would
be desirable, and is plausibly within reach. I note that there is a close connection between the
high-frequency and the high-frequency, small-gap forms of the Hall conductivity in our model of
strontium ruthenate, so it is plausible that the same TROBs provide a necessary condition for the
Hall conductivity in the high-frequency limit alone. Of course, a complete generalisation away from
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even the high-frequency limit would be preferred, but the feasibility of this is questionable due to
the analytic work that would be involved: despite our simple model including just four terms in
each of the normal state and pairing potential, analytical calculations of the exact anomalous Hall
conductivity were basically impossible. This is a testament to the highly nontrivial nature of the
anomalous Hall conductivity.

A perhaps more attainable goal would be the generalisation of my result to systems that do not
have a centre of inversion, or to multiband superconductors with more than two energy bands.
This would significantly broaden the class of systems to which the resulting argument would apply,
such as the noncentrosymmetric superconductor LaNiC2 [92], or a more realistic three-band model
of strontium ruthenate [97]. It is unclear exactly how much additional work would be required
to approach these generalisations because the assumptions we would be required to drop were
fairly central to my derivation. Future work could also investigate the relationship between the
TROBs and other necessary conditions for a Hall conductivity identified in specific models, or
try to identify further physical conditions from them. For example, we know that the TROBs
encapsulate both the condition that time-reversal symmetry is broken and that it is communicated
to the centre-of-mass coordinate, but further physically meaningful conditions may be able to be
extracted in the context of a given system. On the other hand, the requirement of interband pairing
identified by Taylor and Kallin [91] could not be related to the TROBs alone, but required the full
form of (5.59). Finally, it is worth emphasising that I have solely considered contributions to the
Hall conductivity from intrinsic mechanisms. There has been much theoretical work providing
insight into the mechanisms which can lead to a Hall conductivity via impurity scattering [34,
45–48]. It would be interesting to study these extrinsic contributions in a system where we also
have the intrinsic Hall conductivity studied here.
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Appendix A

Numerical considerations

This appendix deals with the issues that arise when actually performing the numerical calcula-
tions presented in Chapter 6. Sections A.1 and A.2 deal with how to simplify and speed up the
calculations, while A.3 deals with the accuracy of the results.

A.1 Minimising the free energy

In Chapter 6 we determined (6.50) as the free energy of a superconducting state with two pairing
channels. In order to determine the amplitude of each pairing channel, to be used in the calculation
of the Hall conductivity, we had to minimise (6.50) with respect to these amplitudes. In this section
I will outline how I approached this numerically, as there are a number of results that can be used
to simplify the calculation.

Momentum summation: First of all, let us address which values of k = (kx, ky) are to be used in
the summation, which should cover all the points in the first Brillouin zone. For a two-dimensional
square lattice with Nlat = N × N sites1 and lattice constant a, the periodic boundary conditions
kx Na = 1 and kyNa = 1 require that

(kx, ky) =

(
(2nx − N)π

Na
,
(2ny − N)π

Na

)
, 0 ≤ nx, ny ≤ N − 1. (A.1)

These points are shown in Figure A.1 A for N = 10. One of the easiest ways to speed up the
calculation is by decreasing the number of momentum points we sum over. By transforming the
coordinates given in (A.1) to

(kx, ky) =

(
(2nx − N + 1)π

Na
,
(2ny − N + 1)π

Na

)
, 0 ≤ nx, ny ≤ N − 1, (A.2)

as shown in Figure A.1 B, we can then exploit the symmetries of D4h in order to sum over only the
shaded region shown in Figure A.1 C, which is only one eighth of the Brillouin zone2. (A.2) can be
motivated by noting that

1
N2 ∑

k

N→∞−−−→
∫ dkx

2π/a
dky

2π/a
,

1Throughout this thesis N has referred to the total number of lattice points, but for the purposes of this appendix it refers
to the number of lattice points per dimension.

2The transformation from (A.1) to (A.2) is not actually necessary to take advantage of the symmetries of the lattice, as
long as the k points situated on the edge of the Brillouin zone are correctly accounted for. (A.2) is more convenient when it
comes to dealing with these edge points, but if I was to perform these calculations again, I would directly sum over one
eighth of the points shown in Figure A.1 A.
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FIGURE A.1: Restricting the momentum values we sum over in the first Brillouin zone.

for k given by either (A.1) or (A.2), so for sufficiently large N the difference between these sums
should vanish. We can therefore replace the ∑k,α in (6.50) with 8 ∑′k,α, where ∑′k,α is understood
to refer to a sum over k values in the shaded region of A.1 C. Note that contributions to the free
energy from momentum points on the diagonal edge of the shaded region must be multiplied by
one half to avoid double-counting.

Splitting the Hamiltonian into sectors: Aside from the sum over momentum, one of the slowest
steps in the numerical calculation of (6.50) is the determination of the eigenvalues and eigenvectors
of the 8× 8 matrix Hk. Within the triplet-triplet model this step can be sped up by splitting the
HamiltonianH into the two spin sectors discussed in Section 6.1.1. From (6.24), we can write

HMF =
1
2 ∑

k
Ψ†

kHkΨk = ∑
k

Ψ↑†k H↑kΨ↑k, (A.3)

where H↑k is a 4× 4 matrix, and Ψ↑k is a 4× 1 spinor. Because the eigenvalues of H↑k come in ± pairs
(refer to Section 6.1.3), we are able to replace the eigenvalues in (6.50) with those of H↑k , as long
as we remember to multiply the result by two in order to account for the fact that we no longer
have a factor of one half out the front in (A.3). Of course, this only applies to the summation term
in (6.50), as K is in addition to (2.15). Unfortunately, when it comes to the singlet-triplet model the
eigenvalues within a single spin sector do not come in ± pairs, so we cannot make use of this result
because (6.50) was derived assuming this was the case.

The logarithm: As part of determining (6.50), the computer will have to calculate cosh(βEkα/2),
which could cause issues for Ekα � kBT, because cosh grows exponentially. It is safer to use

ln [2 cosh(βEkα/2)] = ln
[
eβEkα/2

(
1 + e−βEkα

)]
=

βEkα

2
+ ln

[
1 + e−βEkα

]
.

Intensive free energy: The free energy, F, is an extensive quantity, which is to say that it will
increase with the number of lattice points, Nlat. It is more convenient to consider the specific free
energy, f = F/Nlat, which is an intensive quantity.

Pairing potential ansatz: In Section 6.1.3 we used a free energy argument in order to restrict
the relative phase between the pairing channels. This considerably speeds up the numerical
minimisation routine as it is being performed with respect to two parameters rather than four.
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Interaction strengths: The interaction strengths, λνν′ , are generally allowed to be complex-valued,
although subject to λνν′ = λ∗ν′ν (see (6.39)), which requires λνν ≡ λν to be real-valued. In all the
calculations I have additionally taken λνν′ to be real, which gives λνν′ = λν′ν.

Final expression: In summary, we can express the free energy in the triplet-triplet model as

f = − 8
N2 ∑

k

′∑
α

[
Ekα +

2
β

ln
(

1 + e−βEkα

)]
− 1

2

(
∆2

1
λ1

+
∆2

2
λ2

+
λ12

λ1λ2
(∆1∆2 + ∆1∆2)

)
, (A.4)

where Ekα are understood to be the two positive eigenvalues of the 4× 4 matrix H↑k and ∑′k refers
to a sum over one eighth of the first Brillouin zone, as shown in Figure A.1 C. When it comes to the
singlet-triplet model we must associate an additional factor of one half with the first term in (A.4),
and understand Ekα to be the four positive eigenvalues of the 8× 8 matrix Hk. This is the expression
that I minimise numerically with respect to the amplitudes of the two pairing channels. While it
would be fairly straightforward to express (A.4) directly in terms of ∆0,1 and ∆0,2 using (6.49), it is
easier to instead minimise (A.4) in terms of the variational parameters ∆1 and ∆2, and calculate ∆0,1

and ∆0,2 at the end. When taking this approach we must express Ekα in terms of ∆1 and ∆2, rather
than directly in terms of ∆0,1 and ∆0,2, in order to be consistent. The minimisation is performed
using a Nelder–Mead method, implemented in the Optim.jl package for Julia. Examples of the
code used to calculate and minimise the free energy can be found in Appendices B.1 and B.2.

A.2 Calculating the Hall conductivity

The efficiency of the code when it comes to calculating the Hall conductivity can be improved in
much the same ways as for the free energy. We can reduce the number of momentum values we
need to sum over by exploiting the lattice symmetries in order to sum over only one eighth of the
Brillouin zone. For both the triplet-triplet and the singlet-triplet models we can replace the BdG
Hamiltonian with H↑k by exploiting (A.3). The resulting expression is a modified version of (6.54):

σH(ω) =
2e2

iNω ∑
k

′ ∑
α,α′

[
tanh

(
Ekα β

2

)
− tanh

(
Ekα′ β

2

)
Ekα − Ekα′ + ω + i0+

×
(
〈k, α| vx

k
∣∣k, α′

〉 〈
k, α′

∣∣ vy
k |k, α〉 − 〈k, α| vy

k

∣∣k, α′
〉 〈

k, α′
∣∣ vx

k |k, α〉
) ]

, (A.5)

where Ekα and |k, α〉 are understood to be the eigenvalues and eigenstates of the 4× 4 matrix
H↑k , and ∑̃k refers to a sum over one eighth of the first Brillouin zone, as shown in Figure A.1 C.
The momentum sum speed up can also be applied to the approximate results, (6.57), (6.59), and
(6.71). An example of the code used to calculate both the exact and approximate forms of the Hall
conductivity can be found in Appendix B.3.

A.3 Numerical accuracy

When performing numerical calculations there are a number of errors which we would like to
minimise. One source of error is that approximations must be made, such as being unable to take
0+ to be truly infinitesimal (see discussion in Chapter 6), and being unable to take N to be infinite.
Another source of error is introduced in the optimisation step used to minimise the free energy.
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FIGURE A.2: The convergence of the pairing potential amplitudes with respect to N. The triplet-triplet pairing
model discussed in Chapter 6 was used, taking kBT/t1 = 0.01, h̄ω/t1 = 0.6, and 0+ = 0.001.

Numerical optimisation routines must decide on an some “convergence criterion”. The pairing
potentials that minimise the free energy can never be determined with absolute precision by a
numerical algorithm. Instead, we must verify that the convergence criterion is small enough such
that the error is negligible for our purposes.

Convergence with respect to N: In order to test for convergence, I calculated both the pairing
potentials and the Hall conductivity using a range of values of N. For these calculations I used the
triplet-triplet model with the first set of interaction strengths, and took kBT/t1 = 0.01, h̄ω/t1 = 0.6,
and 0+ = 0.001. For the pairing potentials I varied N between 50 and 1000. The results are
shown in Figure A.2 A. For each value of N I plot the disparity between the calculation with that
value of N from that calculated with N = 1000. This is not to presuppose that the N = 1000
calculation is correct, but allows us to see how this disparity decreases as N is increased. For the
Hall conductivity I took N from 100 to 7500. The results are shown in A.2 B. Again, I plot the
disparity of each calculation with respect to the N = 7500 calculation.

We observe that the pairing potentials are well converged by N = 400, and after N = 500 there
is negligible improvement. Figure 6.2 indicates that the pairing amplitudes are on the order of 10−2,
which means that by N = 500 the error is well less than one in one hundred. The Hall conductivity
does not converge as fast, although by N = 5000 the disparity is on the order of 10−6. Figure 6.4
indicates that the Hall conductivity is on the order of 10−4 at kBT/t1 = 0.01 and h̄ω/t1 = 0.6, which
means that the error is also on the order of one in one hundred. For this reason, despite Figure A.2 B

indicating that the Hall conductivity has not converged as far as it could have by N = 5000, I made
the decision that this would be sufficient for our purposes. The error should not be enough to mask
any qualitative features, although it probably explains the numerical artefacts at high frequencies
in Figure 6.6 B for example.

It is worth noting that, for both the pairing amplitudes and the Hall conductivity calculations,
the convergence with respect to N is dependent on the gap magnitudes. Smaller gap magnitudes
require a larger value of N (i.e. a finer momentum resolution) to reach convergence. This is because
of the Ekα eigenvalues, which appear in both (A.4) and (A.5). Convergence is reached when the
energy difference between neighbouring momentum points is negligible compared to the gap
magnitudes, which requires a finer resolution when these magnitudes are smaller. As noted in
Chapter 6, the gap magnitudes used there correspond to a critical temperature approximately forty
times larger than the experimentally observed value. If I had aimed for a more physical value
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FIGURE A.3: The convergence of the pairing potential amplitudes with respect to the tolerance of the Nelder–
Mead algorithm. The triplet-triplet pairing model discussed in Chapter 6 was used, taking kBT/t1 = 0.01.

(by reducing the interaction strengths) the corresponding gap magnitudes would then require
a much finer momentum resolution. As noted in the text, the values I did use were still in the
weak-coupling regime, so I did not feel that it was necessary to go to this additional effort.

Convergence criterion in the optimisation routine: The Nelder–Mead algorithm performs nu-
merical optimisation of multi-dimensional functions using simplex optimisation. I will not go into
the specifics of the convergence criterion it implements, although it can be found in the original
paper [98]. The Optim.jl package alters the convergence criterion directly by setting the “toler-
ance”, which is taken to be 10−8 by default. In order to see if this was sufficient I calculated the
pairing potentials (again, for the triplet-triplet model with the first set of interaction strengths, and
kBT/t1 = 0.01) for a range of tolerances between 10−8 and 10−15. Figure A.3 plots the disparity of
each calculation with respect to the tol. = 10−15 calculation. We see that significant improvements
can be made by decreasing the tolerance from 10−8. By tol. = 10−12 the result is essentially unaf-
fected by any further decrease. For this reason I set the tolerance to be 10−12 in my calculations.
I could have probably justified a larger tolerance, but each order of magnitude came with only a
small increase in calculation time.
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Appendix B

Code samples

This appendix provides examples of the code used for the numerical calculations in Chapter 6.
Where the code is specific to an individual model the triplet-triplet model outlined in Section 6.1 is
used. The code is written entirely in Julia, using the LinearAlgebra.jl and Optim.jl packages.

B.1 Calculating the free energy

The following function was used to convert between ∆0,1, ∆0,2 and ∆1, ∆2(refer to Section 6.2).

∆conversion(∆0) = [∆0[1] + ∆0[2]*λ[3]/λ[2], ∆0[2] + ∆0[1]*λ[3]/λ[1]]

When it came to calculating the free energy, the single-particle Hamiltonian was constructed
in the spin-up sector and used to calculate the relevant eigenvalues. The form of the free energy as
implemented in this code differs slightly from (6.50). See Appendix A.1 for an explanation of some
of the techniques implemented here to speed up the calculation.

function f(∆0)
fsum = 0.0;

for nx in N/2:N-1, ny in N/2:nx

#calculate momentum values

kx = (2*nx-N+1)*pi/N

ky = (2*ny-N+1)*pi/N

#don't double count diagonals of the B zone

BZdiagonal = (nx == ny ? 0.5 : 1.0)

#construct normal state Hamiltonian

h00 = -t1*(cos(kx)+cos(ky)) - µ;

h10 =2*t3*(sin(kx)*sin(ky));

h30 = -t2*(cos(kx)-cos(ky));

h23 = soc

#construct pairing potential

∆01 = ∆conversion(∆0)[1]*(sin(kx)+im*sin(ky));
∆31 = ∆conversion(∆0)[2]*(sin(kx)-im*sin(ky));

#explicitly construct one sector of HBdG

Hbdg = [h00+h30 h10-im*h23 ∆01+∆31 0;
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h10+im*h23 h00-h30 0 ∆01-∆31;
conj(∆01)+conj(∆31) 0 -h00-h30 -h10+im*h23;

0 conj(∆01)-conj(∆31) -h10-im*h23 -h00+h30]

#calculate eigenvalues of HBdG

evals = eigvals(Hbdg)

#sum over positive e-values (± is taken into account in the formula)

for α in 3:4

fsum += (evals[α]+(2/β)*log(1+exp(-β*evals[α])))*BZdiagonal

end

end

return -8/(N^2)*fsum - 0.5*(∆0[1]^2/λ[1] + ∆0[2]^2/λ[2] + λ[3]/

↪→(λ[1]*λ[2])*2*∆0[1]*∆0[2])

end

Note: the t1, t2, t3, and soc parameters are defined in global scope; soc is referred to as λ in this thesis.

B.2 Minimising the free energy

The default Nelder-Mead algorithm as implemented by Optim.jl was used to minimise the free
energy with respect to the pairing potential amplitudes. As discussed in Appendix A.3, the default
tolerance was not found to be sufficient.

∆optim(∆0init,tol) = optimize(f,∆0init,Optim.Options(g_tol=tol)).minimizer

Note: the tol parameter is defined in global scope to be 10e-12, as discussed in Appendix A.3.

The following code was used to calculate the pairing potentials as a function of temperature.
The initial guess supplied to the optimisation algorithm was updated at each temperature. For this
I supplied the “optimised” values from the previous temperature plus some noise. Updating the
initial guess meant the optimisation could be more efficient, while the noise reduced the chance of
getting stuck in a local minimum.

function Tsweep(T1,T2,NT,tol)

Trange = range(T2,stop=T1,length=NT) #runs from high to low temperature

∆0init = [0.0,0.0] #initial guess (is updated for each temperature)

∆0optims = zeros(NT,2)

for (i,T) in enumerate(Trange)

global β = 1.0/T #global scope such that it can be accessed by f in optimize()

∆0optims[i,:] = ∆conversion(∆optim(∆0init,tol))
∆0init = ∆0optims[i,:] .*(0.9.+rand(2)./10) #update initial guess (with noise)

end

return Trange, ∆0optims
end
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B.3 Calculating the Hall conductivity

The following code sample shows how the Hall conductivity was calculated as a function of
frequency, via explicit construction of the single-particle Hamiltonian in the spin-up sector. The
approximate results are also calculated. As for the free energy, the form of the Hall conductivity
implemented here differs slightly from (6.54). See Appendix A.2 for an explanation as to why.
Analogous code was used to calculate the Hall conductivity as a function of temperature, but is not
included here.

function σHω(;Nmax::Int, temp::Float64, ωmax::Int, deltaomega::Float64, zeroplus::

↪→Float64)

hall = zeros(ωmax) .+ 0im #the exact result

approxhall = zeros(ωmax) #the high-ω approximation

approx2hall = zeros(ωmax) #the high-ω, small-∆ approximation

temp = 1/β

for nx in Nmax/2:Nmax-1

for ny in Nmax/2:nx #sum over one eighth of B zone

kx = (2*nx-Nmax+1)*pi/Nmax

ky = (2*ny-Nmax+1)*pi/Nmax

#don't double count diagonals of the B zone

BZdiagonal = (nx == ny ? 0.5 : 1.0)

#construct normal state Hamiltonian

h00 = -t1*(cos(kx)+cos(ky)) - µ;

h10 =2*t3*(sin(kx)*sin(ky));

h30 = -t2*(cos(kx)-cos(ky));

h23 = soc

#calculate eigenvalues of normal state Hamiltonian

Ea = h00+sqrt(h10^2+h30^2+h23^2)

Eb = h00-sqrt(h10^2+h30^2+h23^2)

#construct pairing potential

∆01 = ∆0[1]*(sin(kx)+im*sin(ky));
∆31 = ∆0[2]*(sin(kx)-im*sin(ky));

#explicitly construct one sector of HBdG

Hbdg = [h00+h30 h10-im*h23 ∆01+∆31 0;

h10+im*h23 h00-h30 0 ∆01-∆31;
conj(∆01)+conj(∆31) 0 -h00-h30 -h10+im*h23;

0 conj(∆01)-conj(∆31) -h10-im*h23 -h00+h30]

#calculate eigenvectors and values of HBdG

evecs = eigvecs(Hbdg)

evals = eigvals(Hbdg)

#construct velocity terms (vx5 and vy5 = 0)
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v00x = t1*sin(kx);

v00y = t1*sin(ky);

v10x =2*t3*cos(kx)*sin(ky);

v10y =2*t3*sin(kx)*cos(ky);

v30x = t2*sin(kx);

v30y = -t2*sin(ky);

Vx = v00x*kron(σ0,σ0) + v10x*kron(σ0,σ1) + v30x*kron(σ0,σ3) #in one sector

Vy = v00y*kron(σ0,σ0) + v10y*kron(σ0,σ1) + v30y*kron(σ0,σ3)

Threads.@threads for iω in 1:ωmax

ω = iω*deltaomega + im*zeroplus

for hi in 1:4, hj in 1:4

hall[iω] += (dot(evecs[:,hi],Vx*evecs[:,hj])*dot(evecs[:,hj],Vy*evecs[:

↪→,hi]) - dot(evecs[:,hi],Vy*evecs[:,hj])*dot(evecs[:,hj],Vx*evecs[:,hi])) * 

↪→(tanh(evals[hi]/(2*temp)) - tanh(evals[hj]/(2*temp)))/(real(ω)*(evals[hi] - evals[hj] 

↪→+ ω)) * BZdiagonal

end #end hi, hj sum

approxhall[iω] += h10*(v10x*v30y-v10y*v30x)*imag(conj(∆01)*∆31) * 

↪→(tanh(evals[1]/(2*temp))/

↪→((evals[1]-evals[2])*(evals[1]-evals[3])*(evals[1]-evals[4])) + tanh(evals[2]/

↪→(2*temp))/((evals[2]-evals[1])*(evals[2]-evals[3])*(evals[2]-evals[4])) + 

↪→tanh(evals[3]/(2*temp))/((evals[3]-evals[1])*(evals[3]-evals[2])*(evals[3]-evals[4])) 

↪→+ tanh(evals[4]/(2*temp))/

↪→((evals[4]-evals[1])*(evals[4]-evals[2])*(evals[4]-evals[3])))* BZdiagonal / real(ω)^2

approx2hall[iω] += 

↪→h10*(v10x*v30y-v10y*v30x)*imag(conj(∆01)*∆31)*(Ea*tanh(Eb/(2*temp))-Eb*tanh(Ea/
↪→(2*temp)))/(Ea*Eb*(Ea^2-Eb^2)*real(ω)^2) * BZdiagonal;

end #end ω loop

end #end ny sum

end #end nx sum

return 8*2*hall/(8*im*Nmax^2), #exact result (x8 for k sum, x2 for one sector)

8*approxhall*(-8)/Nmax^2, #high-ω approximation (x8 for k sum)

8*approx2hall*8/Nmax^2, #high-ω, small-∆ approximation (x8 for k sum)

(1:ωmax)*deltaomega #the vector of frequencies

end

Note: the vector of optimised pairing potentials ∆0 is defined in global scope. Additionally, the σ0, σ1,

and σ3 variables used in the definition of Vx and Vy are the relevant Pauli matrices.
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